Proof of Theorem xdivrec
| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1137 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
𝐵 ∈
ℝ) |
| 2 | 1 | rexrd 11294 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
𝐵 ∈
ℝ*) |
| 3 | | simp1 1136 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
𝐴 ∈
ℝ*) |
| 4 | | 1xr 11303 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
| 5 | 4 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → 1
∈ ℝ*) |
| 6 | | simp3 1138 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
𝐵 ≠ 0) |
| 7 | 5, 1, 6 | xdivcld 32852 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → (1
/𝑒 𝐵)
∈ ℝ*) |
| 8 | 3, 7 | xmulcld 13327 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐴 ·e (1
/𝑒 𝐵))
∈ ℝ*) |
| 9 | | xmulcom 13291 |
. . . . 5
⊢ ((𝐵 ∈ ℝ*
∧ (𝐴
·e (1 /𝑒 𝐵)) ∈ ℝ*) → (𝐵 ·e (𝐴 ·e (1
/𝑒 𝐵)))
= ((𝐴 ·e
(1 /𝑒 𝐵)) ·e 𝐵)) |
| 10 | 2, 8, 9 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐵 ·e
(𝐴 ·e (1
/𝑒 𝐵)))
= ((𝐴 ·e
(1 /𝑒 𝐵)) ·e 𝐵)) |
| 11 | | xmulass 13312 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ (1 /𝑒 𝐵) ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ ((𝐴
·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1
/𝑒 𝐵)
·e 𝐵))) |
| 12 | 3, 7, 2, 11 | syl3anc 1372 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
((𝐴 ·e (1
/𝑒 𝐵))
·e 𝐵) =
(𝐴 ·e ((1
/𝑒 𝐵)
·e 𝐵))) |
| 13 | | xmulcom 13291 |
. . . . . . 7
⊢ (((1
/𝑒 𝐵)
∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((1
/𝑒 𝐵)
·e 𝐵) =
(𝐵 ·e (1
/𝑒 𝐵))) |
| 14 | 7, 2, 13 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → ((1
/𝑒 𝐵)
·e 𝐵) =
(𝐵 ·e (1
/𝑒 𝐵))) |
| 15 | | eqid 2734 |
. . . . . . 7
⊢ (1
/𝑒 𝐵) =
(1 /𝑒 𝐵) |
| 16 | | xdivmul 32854 |
. . . . . . . 8
⊢ ((1
∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((1
/𝑒 𝐵) =
(1 /𝑒 𝐵)
↔ (𝐵
·e (1 /𝑒 𝐵)) = 1)) |
| 17 | 5, 7, 1, 6, 16 | syl112anc 1375 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → ((1
/𝑒 𝐵) =
(1 /𝑒 𝐵)
↔ (𝐵
·e (1 /𝑒 𝐵)) = 1)) |
| 18 | 15, 17 | mpbii 233 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐵 ·e (1
/𝑒 𝐵)) =
1) |
| 19 | 14, 18 | eqtrd 2769 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → ((1
/𝑒 𝐵)
·e 𝐵) =
1) |
| 20 | 19 | oveq2d 7430 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐴 ·e ((1
/𝑒 𝐵)
·e 𝐵)) =
(𝐴 ·e
1)) |
| 21 | 10, 12, 20 | 3eqtrd 2773 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐵 ·e
(𝐴 ·e (1
/𝑒 𝐵)))
= (𝐴 ·e
1)) |
| 22 | | xmulrid 13304 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐴
·e 1) = 𝐴) |
| 23 | 3, 22 | syl 17 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐴 ·e 1)
= 𝐴) |
| 24 | 21, 23 | eqtrd 2769 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐵 ·e
(𝐴 ·e (1
/𝑒 𝐵)))
= 𝐴) |
| 25 | | xdivmul 32854 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ (𝐴
·e (1 /𝑒 𝐵)) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1
/𝑒 𝐵))
↔ (𝐵
·e (𝐴
·e (1 /𝑒 𝐵))) = 𝐴)) |
| 26 | 3, 8, 1, 6, 25 | syl112anc 1375 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
((𝐴 /𝑒
𝐵) = (𝐴 ·e (1
/𝑒 𝐵))
↔ (𝐵
·e (𝐴
·e (1 /𝑒 𝐵))) = 𝐴)) |
| 27 | 24, 26 | mpbird 257 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐴 /𝑒
𝐵) = (𝐴 ·e (1
/𝑒 𝐵))) |