Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivrec Structured version   Visualization version   GIF version

Theorem xdivrec 32820
Description: Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Assertion
Ref Expression
xdivrec ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)))

Proof of Theorem xdivrec
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
21rexrd 11200 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ*)
3 simp1 1136 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ*)
4 1xr 11209 . . . . . . . 8 1 ∈ ℝ*
54a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 1 ∈ ℝ*)
6 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
75, 1, 6xdivcld 32816 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 /𝑒 𝐵) ∈ ℝ*)
83, 7xmulcld 13238 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ*)
9 xmulcom 13202 . . . . 5 ((𝐵 ∈ ℝ* ∧ (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ*) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵))
102, 8, 9syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵))
11 xmulass 13223 . . . . 5 ((𝐴 ∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)))
123, 7, 2, 11syl3anc 1373 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)))
13 xmulcom 13202 . . . . . . 7 (((1 /𝑒 𝐵) ∈ ℝ*𝐵 ∈ ℝ*) → ((1 /𝑒 𝐵) ·e 𝐵) = (𝐵 ·e (1 /𝑒 𝐵)))
147, 2, 13syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) ·e 𝐵) = (𝐵 ·e (1 /𝑒 𝐵)))
15 eqid 2729 . . . . . . 7 (1 /𝑒 𝐵) = (1 /𝑒 𝐵)
16 xdivmul 32818 . . . . . . . 8 ((1 ∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((1 /𝑒 𝐵) = (1 /𝑒 𝐵) ↔ (𝐵 ·e (1 /𝑒 𝐵)) = 1))
175, 7, 1, 6, 16syl112anc 1376 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) = (1 /𝑒 𝐵) ↔ (𝐵 ·e (1 /𝑒 𝐵)) = 1))
1815, 17mpbii 233 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (1 /𝑒 𝐵)) = 1)
1914, 18eqtrd 2764 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) ·e 𝐵) = 1)
2019oveq2d 7385 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)) = (𝐴 ·e 1))
2110, 12, 203eqtrd 2768 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = (𝐴 ·e 1))
22 xmulrid 13215 . . . 4 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
233, 22syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e 1) = 𝐴)
2421, 23eqtrd 2764 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴)
25 xdivmul 32818 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)) ↔ (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴))
263, 8, 1, 6, 25syl112anc 1376 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)) ↔ (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴))
2724, 26mpbird 257 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045  *cxr 11183   ·e cxmu 13047   /𝑒 cxdiv 32810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-xneg 13048  df-xmul 13050  df-xdiv 32811
This theorem is referenced by:  esumdivc  34046
  Copyright terms: Public domain W3C validator