Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivrec Structured version   Visualization version   GIF version

Theorem xdivrec 31103
Description: Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Assertion
Ref Expression
xdivrec ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)))

Proof of Theorem xdivrec
StepHypRef Expression
1 simp2 1135 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
21rexrd 10956 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ*)
3 simp1 1134 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ*)
4 1xr 10965 . . . . . . . 8 1 ∈ ℝ*
54a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 1 ∈ ℝ*)
6 simp3 1136 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
75, 1, 6xdivcld 31099 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 /𝑒 𝐵) ∈ ℝ*)
83, 7xmulcld 12965 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ*)
9 xmulcom 12929 . . . . 5 ((𝐵 ∈ ℝ* ∧ (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ*) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵))
102, 8, 9syl2anc 583 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵))
11 xmulass 12950 . . . . 5 ((𝐴 ∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)))
123, 7, 2, 11syl3anc 1369 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)))
13 xmulcom 12929 . . . . . . 7 (((1 /𝑒 𝐵) ∈ ℝ*𝐵 ∈ ℝ*) → ((1 /𝑒 𝐵) ·e 𝐵) = (𝐵 ·e (1 /𝑒 𝐵)))
147, 2, 13syl2anc 583 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) ·e 𝐵) = (𝐵 ·e (1 /𝑒 𝐵)))
15 eqid 2738 . . . . . . 7 (1 /𝑒 𝐵) = (1 /𝑒 𝐵)
16 xdivmul 31101 . . . . . . . 8 ((1 ∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((1 /𝑒 𝐵) = (1 /𝑒 𝐵) ↔ (𝐵 ·e (1 /𝑒 𝐵)) = 1))
175, 7, 1, 6, 16syl112anc 1372 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) = (1 /𝑒 𝐵) ↔ (𝐵 ·e (1 /𝑒 𝐵)) = 1))
1815, 17mpbii 232 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (1 /𝑒 𝐵)) = 1)
1914, 18eqtrd 2778 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) ·e 𝐵) = 1)
2019oveq2d 7271 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)) = (𝐴 ·e 1))
2110, 12, 203eqtrd 2782 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = (𝐴 ·e 1))
22 xmulid1 12942 . . . 4 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
233, 22syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e 1) = 𝐴)
2421, 23eqtrd 2778 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴)
25 xdivmul 31101 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)) ↔ (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴))
263, 8, 1, 6, 25syl112anc 1372 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)) ↔ (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴))
2724, 26mpbird 256 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  wne 2942  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803  *cxr 10939   ·e cxmu 12776   /𝑒 cxdiv 31093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-xneg 12777  df-xmul 12779  df-xdiv 31094
This theorem is referenced by:  esumdivc  31951
  Copyright terms: Public domain W3C validator