Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivrec Structured version   Visualization version   GIF version

Theorem xdivrec 31201
Description: Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Assertion
Ref Expression
xdivrec ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)))

Proof of Theorem xdivrec
StepHypRef Expression
1 simp2 1136 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
21rexrd 11025 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ*)
3 simp1 1135 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ*)
4 1xr 11034 . . . . . . . 8 1 ∈ ℝ*
54a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 1 ∈ ℝ*)
6 simp3 1137 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
75, 1, 6xdivcld 31197 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 /𝑒 𝐵) ∈ ℝ*)
83, 7xmulcld 13036 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ*)
9 xmulcom 13000 . . . . 5 ((𝐵 ∈ ℝ* ∧ (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ*) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵))
102, 8, 9syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵))
11 xmulass 13021 . . . . 5 ((𝐴 ∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)))
123, 7, 2, 11syl3anc 1370 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)))
13 xmulcom 13000 . . . . . . 7 (((1 /𝑒 𝐵) ∈ ℝ*𝐵 ∈ ℝ*) → ((1 /𝑒 𝐵) ·e 𝐵) = (𝐵 ·e (1 /𝑒 𝐵)))
147, 2, 13syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) ·e 𝐵) = (𝐵 ·e (1 /𝑒 𝐵)))
15 eqid 2738 . . . . . . 7 (1 /𝑒 𝐵) = (1 /𝑒 𝐵)
16 xdivmul 31199 . . . . . . . 8 ((1 ∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((1 /𝑒 𝐵) = (1 /𝑒 𝐵) ↔ (𝐵 ·e (1 /𝑒 𝐵)) = 1))
175, 7, 1, 6, 16syl112anc 1373 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) = (1 /𝑒 𝐵) ↔ (𝐵 ·e (1 /𝑒 𝐵)) = 1))
1815, 17mpbii 232 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (1 /𝑒 𝐵)) = 1)
1914, 18eqtrd 2778 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) ·e 𝐵) = 1)
2019oveq2d 7291 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)) = (𝐴 ·e 1))
2110, 12, 203eqtrd 2782 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = (𝐴 ·e 1))
22 xmulid1 13013 . . . 4 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
233, 22syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e 1) = 𝐴)
2421, 23eqtrd 2778 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴)
25 xdivmul 31199 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)) ↔ (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴))
263, 8, 1, 6, 25syl112anc 1373 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)) ↔ (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴))
2724, 26mpbird 256 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wne 2943  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872  *cxr 11008   ·e cxmu 12847   /𝑒 cxdiv 31191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-xneg 12848  df-xmul 12850  df-xdiv 31192
This theorem is referenced by:  esumdivc  32051
  Copyright terms: Public domain W3C validator