Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivrec Structured version   Visualization version   GIF version

Theorem xdivrec 30921
Description: Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Assertion
Ref Expression
xdivrec ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)))

Proof of Theorem xdivrec
StepHypRef Expression
1 simp2 1139 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
21rexrd 10883 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ*)
3 simp1 1138 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ*)
4 1xr 10892 . . . . . . . 8 1 ∈ ℝ*
54a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 1 ∈ ℝ*)
6 simp3 1140 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
75, 1, 6xdivcld 30917 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 /𝑒 𝐵) ∈ ℝ*)
83, 7xmulcld 12892 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ*)
9 xmulcom 12856 . . . . 5 ((𝐵 ∈ ℝ* ∧ (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ*) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵))
102, 8, 9syl2anc 587 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵))
11 xmulass 12877 . . . . 5 ((𝐴 ∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)))
123, 7, 2, 11syl3anc 1373 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐴 ·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)))
13 xmulcom 12856 . . . . . . 7 (((1 /𝑒 𝐵) ∈ ℝ*𝐵 ∈ ℝ*) → ((1 /𝑒 𝐵) ·e 𝐵) = (𝐵 ·e (1 /𝑒 𝐵)))
147, 2, 13syl2anc 587 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) ·e 𝐵) = (𝐵 ·e (1 /𝑒 𝐵)))
15 eqid 2737 . . . . . . 7 (1 /𝑒 𝐵) = (1 /𝑒 𝐵)
16 xdivmul 30919 . . . . . . . 8 ((1 ∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((1 /𝑒 𝐵) = (1 /𝑒 𝐵) ↔ (𝐵 ·e (1 /𝑒 𝐵)) = 1))
175, 7, 1, 6, 16syl112anc 1376 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) = (1 /𝑒 𝐵) ↔ (𝐵 ·e (1 /𝑒 𝐵)) = 1))
1815, 17mpbii 236 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (1 /𝑒 𝐵)) = 1)
1914, 18eqtrd 2777 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 /𝑒 𝐵) ·e 𝐵) = 1)
2019oveq2d 7229 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e ((1 /𝑒 𝐵) ·e 𝐵)) = (𝐴 ·e 1))
2110, 12, 203eqtrd 2781 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = (𝐴 ·e 1))
22 xmulid1 12869 . . . 4 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
233, 22syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ·e 1) = 𝐴)
2421, 23eqtrd 2777 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴)
25 xdivmul 30919 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐴 ·e (1 /𝑒 𝐵)) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)) ↔ (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴))
263, 8, 1, 6, 25syl112anc 1376 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)) ↔ (𝐵 ·e (𝐴 ·e (1 /𝑒 𝐵))) = 𝐴))
2724, 26mpbird 260 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089   = wceq 1543  wcel 2110  wne 2940  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730  *cxr 10866   ·e cxmu 12703   /𝑒 cxdiv 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-xneg 12704  df-xmul 12706  df-xdiv 30912
This theorem is referenced by:  esumdivc  31763
  Copyright terms: Public domain W3C validator