ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwsubmcl GIF version

Theorem gsumwsubmcl 13515
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)

Proof of Theorem gsumwsubmcl
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6002 . . . . 5 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
21adantl 277 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
3 submrcl 13490 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
4 eqid 2229 . . . . . . 7 (0g𝐺) = (0g𝐺)
54gsum0g 13415 . . . . . 6 (𝐺 ∈ Mnd → (𝐺 Σg ∅) = (0g𝐺))
63, 5syl 14 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 Σg ∅) = (0g𝐺))
76ad2antrr 488 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg ∅) = (0g𝐺))
82, 7eqtrd 2262 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (0g𝐺))
94subm0cl 13497 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
109ad2antrr 488 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (0g𝐺) ∈ 𝑆)
118, 10eqeltrd 2306 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
12 eqid 2229 . . . 4 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2229 . . . 4 (+g𝐺) = (+g𝐺)
143ad2antrr 488 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
15 lennncl 11078 . . . . . . 7 ((𝑊 ∈ Word 𝑆𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
1615adantll 476 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
17 nnm1nn0 9398 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
1816, 17syl 14 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
19 nn0uz 9745 . . . . 5 0 = (ℤ‘0)
2018, 19eleqtrdi 2322 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
21 wrdf 11064 . . . . . . 7 (𝑊 ∈ Word 𝑆𝑊:(0..^(♯‘𝑊))⟶𝑆)
2221ad2antlr 489 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝑆)
2316nnzd 9556 . . . . . . . 8 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
24 fzoval 10332 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2523, 24syl 14 . . . . . . 7 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2625feq2d 5457 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝑆𝑊:(0...((♯‘𝑊) − 1))⟶𝑆))
2722, 26mpbid 147 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)
2812submss 13495 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2928ad2antrr 488 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
3027, 29fssd 5482 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶(Base‘𝐺))
3112, 13, 14, 20, 30gsumval2 13416 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) = (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)))
32 fvexg 5642 . . . . 5 ((𝑊 ∈ Word 𝑆𝑥 ∈ (ℤ‘0)) → (𝑊𝑥) ∈ V)
3332ad4ant24 516 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (ℤ‘0)) → (𝑊𝑥) ∈ V)
3427ffvelcdmda 5763 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝑆)
3513submcl 13498 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
36353expb 1228 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3736ad4ant14 514 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
38 ssv 3246 . . . . 5 𝑆 ⊆ V
3938a1i 9 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ V)
40 simprl 529 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑥 ∈ V)
4114adantr 276 . . . . . 6 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝐺 ∈ Mnd)
42 plusgslid 13131 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4342slotex 13045 . . . . . 6 (𝐺 ∈ Mnd → (+g𝐺) ∈ V)
4441, 43syl 14 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (+g𝐺) ∈ V)
45 simprr 531 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V)
46 ovexg 6028 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
4740, 44, 45, 46syl3anc 1271 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝐺)𝑦) ∈ V)
4820, 33, 34, 37, 39, 47seq3clss 10680 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)) ∈ 𝑆)
4931, 48eqeltrd 2306 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
50 wrdfin 11077 . . . . 5 (𝑊 ∈ Word 𝑆𝑊 ∈ Fin)
51 fin0or 7036 . . . . 5 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊))
5250, 51syl 14 . . . 4 (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊))
53 n0r 3505 . . . . 5 (∃𝑗 𝑗𝑊𝑊 ≠ ∅)
5453orim2i 766 . . . 4 ((𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5552, 54syl 14 . . 3 (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5655adantl 277 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5711, 49, 56mpjaodan 803 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  wne 2400  Vcvv 2799  wss 3197  c0 3491  wf 5310  cfv 5314  (class class class)co 5994  Fincfn 6877  0cc0 7987  1c1 7988  cmin 8305  cn 9098  0cn0 9357  cz 9434  cuz 9710  ...cfz 10192  ..^cfzo 10326  seqcseq 10656  chash 10984  Word cword 11058  Basecbs 13018  +gcplusg 13096  0gc0g 13275   Σg cgsu 13276  Mndcmnd 13435  SubMndcsubmnd 13477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-ihash 10985  df-word 11059  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-igsum 13278  df-submnd 13479
This theorem is referenced by:  gsumwcl  13516
  Copyright terms: Public domain W3C validator