ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwsubmcl GIF version

Theorem gsumwsubmcl 13138
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)

Proof of Theorem gsumwsubmcl
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5931 . . . . 5 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
21adantl 277 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
3 submrcl 13113 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
4 eqid 2196 . . . . . . 7 (0g𝐺) = (0g𝐺)
54gsum0g 13049 . . . . . 6 (𝐺 ∈ Mnd → (𝐺 Σg ∅) = (0g𝐺))
63, 5syl 14 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 Σg ∅) = (0g𝐺))
76ad2antrr 488 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg ∅) = (0g𝐺))
82, 7eqtrd 2229 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (0g𝐺))
94subm0cl 13120 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
109ad2antrr 488 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (0g𝐺) ∈ 𝑆)
118, 10eqeltrd 2273 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
12 eqid 2196 . . . 4 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2196 . . . 4 (+g𝐺) = (+g𝐺)
143ad2antrr 488 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
15 lennncl 10957 . . . . . . 7 ((𝑊 ∈ Word 𝑆𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
1615adantll 476 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
17 nnm1nn0 9292 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
1816, 17syl 14 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
19 nn0uz 9638 . . . . 5 0 = (ℤ‘0)
2018, 19eleqtrdi 2289 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
21 wrdf 10943 . . . . . . 7 (𝑊 ∈ Word 𝑆𝑊:(0..^(♯‘𝑊))⟶𝑆)
2221ad2antlr 489 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝑆)
2316nnzd 9449 . . . . . . . 8 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
24 fzoval 10225 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2523, 24syl 14 . . . . . . 7 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2625feq2d 5396 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝑆𝑊:(0...((♯‘𝑊) − 1))⟶𝑆))
2722, 26mpbid 147 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)
2812submss 13118 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2928ad2antrr 488 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
3027, 29fssd 5421 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶(Base‘𝐺))
3112, 13, 14, 20, 30gsumval2 13050 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) = (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)))
32 fvexg 5578 . . . . 5 ((𝑊 ∈ Word 𝑆𝑥 ∈ (ℤ‘0)) → (𝑊𝑥) ∈ V)
3332ad4ant24 516 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (ℤ‘0)) → (𝑊𝑥) ∈ V)
3427ffvelcdmda 5698 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝑆)
3513submcl 13121 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
36353expb 1206 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3736ad4ant14 514 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
38 ssv 3206 . . . . 5 𝑆 ⊆ V
3938a1i 9 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ V)
40 simprl 529 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑥 ∈ V)
4114adantr 276 . . . . . 6 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝐺 ∈ Mnd)
42 plusgslid 12800 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4342slotex 12715 . . . . . 6 (𝐺 ∈ Mnd → (+g𝐺) ∈ V)
4441, 43syl 14 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (+g𝐺) ∈ V)
45 simprr 531 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V)
46 ovexg 5957 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
4740, 44, 45, 46syl3anc 1249 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝐺)𝑦) ∈ V)
4820, 33, 34, 37, 39, 47seq3clss 10565 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)) ∈ 𝑆)
4931, 48eqeltrd 2273 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
50 wrdfin 10956 . . . . 5 (𝑊 ∈ Word 𝑆𝑊 ∈ Fin)
51 fin0or 6948 . . . . 5 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊))
5250, 51syl 14 . . . 4 (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊))
53 n0r 3465 . . . . 5 (∃𝑗 𝑗𝑊𝑊 ≠ ∅)
5453orim2i 762 . . . 4 ((𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5552, 54syl 14 . . 3 (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5655adantl 277 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5711, 49, 56mpjaodan 799 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wex 1506  wcel 2167  wne 2367  Vcvv 2763  wss 3157  c0 3451  wf 5255  cfv 5259  (class class class)co 5923  Fincfn 6800  0cc0 7881  1c1 7882  cmin 8199  cn 8992  0cn0 9251  cz 9328  cuz 9603  ...cfz 10085  ..^cfzo 10219  seqcseq 10541  chash 10869  Word cword 10937  Basecbs 12688  +gcplusg 12765  0gc0g 12937   Σg cgsu 12938  Mndcmnd 13067  SubMndcsubmnd 13100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-1o 6475  df-er 6593  df-en 6801  df-dom 6802  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-2 9051  df-n0 9252  df-z 9329  df-uz 9604  df-fz 10086  df-fzo 10220  df-seqfrec 10542  df-ihash 10870  df-word 10938  df-ndx 12691  df-slot 12692  df-base 12694  df-plusg 12778  df-0g 12939  df-igsum 12940  df-submnd 13102
This theorem is referenced by:  gsumwcl  13139
  Copyright terms: Public domain W3C validator