| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 5931 |
. . . . 5
⊢ (𝑊 = ∅ → (𝐺 Σg
𝑊) = (𝐺 Σg
∅)) |
| 2 | 1 | adantl 277 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (𝐺 Σg
∅)) |
| 3 | | submrcl 13113 |
. . . . . 6
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) |
| 4 | | eqid 2196 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 5 | 4 | gsum0g 13049 |
. . . . . 6
⊢ (𝐺 ∈ Mnd → (𝐺 Σg
∅) = (0g‘𝐺)) |
| 6 | 3, 5 | syl 14 |
. . . . 5
⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 Σg ∅) =
(0g‘𝐺)) |
| 7 | 6 | ad2antrr 488 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg ∅) =
(0g‘𝐺)) |
| 8 | 2, 7 | eqtrd 2229 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (0g‘𝐺)) |
| 9 | 4 | subm0cl 13120 |
. . . 4
⊢ (𝑆 ∈ (SubMnd‘𝐺) →
(0g‘𝐺)
∈ 𝑆) |
| 10 | 9 | ad2antrr 488 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) →
(0g‘𝐺)
∈ 𝑆) |
| 11 | 8, 10 | eqeltrd 2273 |
. 2
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) ∈ 𝑆) |
| 12 | | eqid 2196 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 13 | | eqid 2196 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 14 | 3 | ad2antrr 488 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd) |
| 15 | | lennncl 10957 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈
ℕ) |
| 16 | 15 | adantll 476 |
. . . . . 6
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈
ℕ) |
| 17 | | nnm1nn0 9292 |
. . . . . 6
⊢
((♯‘𝑊)
∈ ℕ → ((♯‘𝑊) − 1) ∈
ℕ0) |
| 18 | 16, 17 | syl 14 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈
ℕ0) |
| 19 | | nn0uz 9638 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
| 20 | 18, 19 | eleqtrdi 2289 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈
(ℤ≥‘0)) |
| 21 | | wrdf 10943 |
. . . . . . 7
⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 22 | 21 | ad2antlr 489 |
. . . . . 6
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 23 | 16 | nnzd 9449 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈
ℤ) |
| 24 | | fzoval 10225 |
. . . . . . . 8
⊢
((♯‘𝑊)
∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) |
| 25 | 23, 24 | syl 14 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) →
(0..^(♯‘𝑊)) =
(0...((♯‘𝑊)
− 1))) |
| 26 | 25 | feq2d 5396 |
. . . . . 6
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)) |
| 27 | 22, 26 | mpbid 147 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆) |
| 28 | 12 | submss 13118 |
. . . . . 6
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 29 | 28 | ad2antrr 488 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺)) |
| 30 | 27, 29 | fssd 5421 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶(Base‘𝐺)) |
| 31 | 12, 13, 14, 20, 30 | gsumval2 13050 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) =
(seq0((+g‘𝐺), 𝑊)‘((♯‘𝑊) − 1))) |
| 32 | | fvexg 5578 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑥 ∈ (ℤ≥‘0))
→ (𝑊‘𝑥) ∈ V) |
| 33 | 32 | ad4ant24 516 |
. . . 4
⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (ℤ≥‘0))
→ (𝑊‘𝑥) ∈ V) |
| 34 | 27 | ffvelcdmda 5698 |
. . . 4
⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊‘𝑥) ∈ 𝑆) |
| 35 | 13 | submcl 13121 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
| 36 | 35 | 3expb 1206 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
| 37 | 36 | ad4ant14 514 |
. . . 4
⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
| 38 | | ssv 3206 |
. . . . 5
⊢ 𝑆 ⊆ V |
| 39 | 38 | a1i 9 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ V) |
| 40 | | simprl 529 |
. . . . 5
⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑥 ∈ V) |
| 41 | 14 | adantr 276 |
. . . . . 6
⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝐺 ∈ Mnd) |
| 42 | | plusgslid 12800 |
. . . . . . 7
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 43 | 42 | slotex 12715 |
. . . . . 6
⊢ (𝐺 ∈ Mnd →
(+g‘𝐺)
∈ V) |
| 44 | 41, 43 | syl 14 |
. . . . 5
⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (+g‘𝐺) ∈ V) |
| 45 | | simprr 531 |
. . . . 5
⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V) |
| 46 | | ovexg 5957 |
. . . . 5
⊢ ((𝑥 ∈ V ∧
(+g‘𝐺)
∈ V ∧ 𝑦 ∈ V)
→ (𝑥(+g‘𝐺)𝑦) ∈ V) |
| 47 | 40, 44, 45, 46 | syl3anc 1249 |
. . . 4
⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝐺)𝑦) ∈ V) |
| 48 | 20, 33, 34, 37, 39, 47 | seq3clss 10565 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) →
(seq0((+g‘𝐺), 𝑊)‘((♯‘𝑊) − 1)) ∈ 𝑆) |
| 49 | 31, 48 | eqeltrd 2273 |
. 2
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆) |
| 50 | | wrdfin 10956 |
. . . . 5
⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) |
| 51 | | fin0or 6948 |
. . . . 5
⊢ (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ∃𝑗 𝑗 ∈ 𝑊)) |
| 52 | 50, 51 | syl 14 |
. . . 4
⊢ (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ ∃𝑗 𝑗 ∈ 𝑊)) |
| 53 | | n0r 3465 |
. . . . 5
⊢
(∃𝑗 𝑗 ∈ 𝑊 → 𝑊 ≠ ∅) |
| 54 | 53 | orim2i 762 |
. . . 4
⊢ ((𝑊 = ∅ ∨ ∃𝑗 𝑗 ∈ 𝑊) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅)) |
| 55 | 52, 54 | syl 14 |
. . 3
⊢ (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ 𝑊 ≠ ∅)) |
| 56 | 55 | adantl 277 |
. 2
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅)) |
| 57 | 11, 49, 56 | mpjaodan 799 |
1
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆) |