ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwsubmcl GIF version

Theorem gsumwsubmcl 13537
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)

Proof of Theorem gsumwsubmcl
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6015 . . . . 5 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
21adantl 277 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
3 submrcl 13512 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
4 eqid 2229 . . . . . . 7 (0g𝐺) = (0g𝐺)
54gsum0g 13437 . . . . . 6 (𝐺 ∈ Mnd → (𝐺 Σg ∅) = (0g𝐺))
63, 5syl 14 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 Σg ∅) = (0g𝐺))
76ad2antrr 488 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg ∅) = (0g𝐺))
82, 7eqtrd 2262 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (0g𝐺))
94subm0cl 13519 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
109ad2antrr 488 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (0g𝐺) ∈ 𝑆)
118, 10eqeltrd 2306 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
12 eqid 2229 . . . 4 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2229 . . . 4 (+g𝐺) = (+g𝐺)
143ad2antrr 488 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
15 lennncl 11099 . . . . . . 7 ((𝑊 ∈ Word 𝑆𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
1615adantll 476 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
17 nnm1nn0 9418 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
1816, 17syl 14 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
19 nn0uz 9765 . . . . 5 0 = (ℤ‘0)
2018, 19eleqtrdi 2322 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
21 wrdf 11085 . . . . . . 7 (𝑊 ∈ Word 𝑆𝑊:(0..^(♯‘𝑊))⟶𝑆)
2221ad2antlr 489 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝑆)
2316nnzd 9576 . . . . . . . 8 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
24 fzoval 10352 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2523, 24syl 14 . . . . . . 7 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2625feq2d 5461 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝑆𝑊:(0...((♯‘𝑊) − 1))⟶𝑆))
2722, 26mpbid 147 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)
2812submss 13517 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2928ad2antrr 488 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
3027, 29fssd 5486 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶(Base‘𝐺))
3112, 13, 14, 20, 30gsumval2 13438 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) = (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)))
32 fvexg 5648 . . . . 5 ((𝑊 ∈ Word 𝑆𝑥 ∈ (ℤ‘0)) → (𝑊𝑥) ∈ V)
3332ad4ant24 516 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (ℤ‘0)) → (𝑊𝑥) ∈ V)
3427ffvelcdmda 5772 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝑆)
3513submcl 13520 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
36353expb 1228 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3736ad4ant14 514 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
38 ssv 3246 . . . . 5 𝑆 ⊆ V
3938a1i 9 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ V)
40 simprl 529 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑥 ∈ V)
4114adantr 276 . . . . . 6 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝐺 ∈ Mnd)
42 plusgslid 13153 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4342slotex 13067 . . . . . 6 (𝐺 ∈ Mnd → (+g𝐺) ∈ V)
4441, 43syl 14 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (+g𝐺) ∈ V)
45 simprr 531 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V)
46 ovexg 6041 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
4740, 44, 45, 46syl3anc 1271 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝐺)𝑦) ∈ V)
4820, 33, 34, 37, 39, 47seq3clss 10701 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)) ∈ 𝑆)
4931, 48eqeltrd 2306 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
50 wrdfin 11098 . . . . 5 (𝑊 ∈ Word 𝑆𝑊 ∈ Fin)
51 fin0or 7056 . . . . 5 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊))
5250, 51syl 14 . . . 4 (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊))
53 n0r 3505 . . . . 5 (∃𝑗 𝑗𝑊𝑊 ≠ ∅)
5453orim2i 766 . . . 4 ((𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5552, 54syl 14 . . 3 (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5655adantl 277 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5711, 49, 56mpjaodan 803 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  wne 2400  Vcvv 2799  wss 3197  c0 3491  wf 5314  cfv 5318  (class class class)co 6007  Fincfn 6895  0cc0 8007  1c1 8008  cmin 8325  cn 9118  0cn0 9377  cz 9454  cuz 9730  ...cfz 10212  ..^cfzo 10346  seqcseq 10677  chash 11005  Word cword 11079  Basecbs 13040  +gcplusg 13118  0gc0g 13297   Σg cgsu 13298  Mndcmnd 13457  SubMndcsubmnd 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-ihash 11006  df-word 11080  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-igsum 13300  df-submnd 13501
This theorem is referenced by:  gsumwcl  13538
  Copyright terms: Public domain W3C validator