ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwsubmcl GIF version

Theorem gsumwsubmcl 13200
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)

Proof of Theorem gsumwsubmcl
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . . . 5 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
21adantl 277 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
3 submrcl 13175 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
4 eqid 2196 . . . . . . 7 (0g𝐺) = (0g𝐺)
54gsum0g 13100 . . . . . 6 (𝐺 ∈ Mnd → (𝐺 Σg ∅) = (0g𝐺))
63, 5syl 14 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 Σg ∅) = (0g𝐺))
76ad2antrr 488 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg ∅) = (0g𝐺))
82, 7eqtrd 2229 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) = (0g𝐺))
94subm0cl 13182 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
109ad2antrr 488 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (0g𝐺) ∈ 𝑆)
118, 10eqeltrd 2273 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 = ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
12 eqid 2196 . . . 4 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2196 . . . 4 (+g𝐺) = (+g𝐺)
143ad2antrr 488 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
15 lennncl 10974 . . . . . . 7 ((𝑊 ∈ Word 𝑆𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
1615adantll 476 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
17 nnm1nn0 9309 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
1816, 17syl 14 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
19 nn0uz 9655 . . . . 5 0 = (ℤ‘0)
2018, 19eleqtrdi 2289 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
21 wrdf 10960 . . . . . . 7 (𝑊 ∈ Word 𝑆𝑊:(0..^(♯‘𝑊))⟶𝑆)
2221ad2antlr 489 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝑆)
2316nnzd 9466 . . . . . . . 8 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
24 fzoval 10242 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2523, 24syl 14 . . . . . . 7 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2625feq2d 5398 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝑆𝑊:(0...((♯‘𝑊) − 1))⟶𝑆))
2722, 26mpbid 147 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)
2812submss 13180 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2928ad2antrr 488 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
3027, 29fssd 5423 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶(Base‘𝐺))
3112, 13, 14, 20, 30gsumval2 13101 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) = (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)))
32 fvexg 5580 . . . . 5 ((𝑊 ∈ Word 𝑆𝑥 ∈ (ℤ‘0)) → (𝑊𝑥) ∈ V)
3332ad4ant24 516 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (ℤ‘0)) → (𝑊𝑥) ∈ V)
3427ffvelcdmda 5700 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝑆)
3513submcl 13183 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
36353expb 1206 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3736ad4ant14 514 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
38 ssv 3206 . . . . 5 𝑆 ⊆ V
3938a1i 9 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ V)
40 simprl 529 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑥 ∈ V)
4114adantr 276 . . . . . 6 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝐺 ∈ Mnd)
42 plusgslid 12817 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4342slotex 12732 . . . . . 6 (𝐺 ∈ Mnd → (+g𝐺) ∈ V)
4441, 43syl 14 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (+g𝐺) ∈ V)
45 simprr 531 . . . . 5 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V)
46 ovexg 5959 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
4740, 44, 45, 46syl3anc 1249 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝐺)𝑦) ∈ V)
4820, 33, 34, 37, 39, 47seq3clss 10582 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)) ∈ 𝑆)
4931, 48eqeltrd 2273 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
50 wrdfin 10973 . . . . 5 (𝑊 ∈ Word 𝑆𝑊 ∈ Fin)
51 fin0or 6956 . . . . 5 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊))
5250, 51syl 14 . . . 4 (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊))
53 n0r 3465 . . . . 5 (∃𝑗 𝑗𝑊𝑊 ≠ ∅)
5453orim2i 762 . . . 4 ((𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5552, 54syl 14 . . 3 (𝑊 ∈ Word 𝑆 → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5655adantl 277 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
5711, 49, 56mpjaodan 799 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wex 1506  wcel 2167  wne 2367  Vcvv 2763  wss 3157  c0 3451  wf 5255  cfv 5259  (class class class)co 5925  Fincfn 6808  0cc0 7898  1c1 7899  cmin 8216  cn 9009  0cn0 9268  cz 9345  cuz 9620  ...cfz 10102  ..^cfzo 10236  seqcseq 10558  chash 10886  Word cword 10954  Basecbs 12705  +gcplusg 12782  0gc0g 12960   Σg cgsu 12961  Mndcmnd 13120  SubMndcsubmnd 13162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-ihash 10887  df-word 10955  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-0g 12962  df-igsum 12963  df-submnd 13164
This theorem is referenced by:  gsumwcl  13201
  Copyright terms: Public domain W3C validator