ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzz Unicode version

Theorem gsumfzz 13137
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.)
Hypothesis
Ref Expression
gsumz.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gsumfzz  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  .0.  ) )  =  .0.  )
Distinct variable groups:    .0. , k    k, G    k, M    k, N

Proof of Theorem gsumfzz
Dummy variables  w  u  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
2 gsumz.z . . . . 5  |-  .0.  =  ( 0g `  G )
3 eqid 2196 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
4 simp1 999 . . . . 5  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  G  e.  Mnd )
5 simp2 1000 . . . . 5  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
6 simp3 1001 . . . . 5  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
71, 2mndidcl 13081 . . . . . . . 8  |-  ( G  e.  Mnd  ->  .0.  e.  ( Base `  G
) )
84, 7syl 14 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  .0.  e.  ( Base `  G
) )
98adantr 276 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  k  e.  ( M ... N ) )  ->  .0.  e.  ( Base `  G ) )
109fmpttd 5718 . . . . 5  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
k  e.  ( M ... N )  |->  .0.  ) : ( M ... N ) --> (
Base `  G )
)
111, 2, 3, 4, 5, 6, 10gsumfzval 13044 . . . 4  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  .0.  ) )  =  if ( N  < 
M ,  .0.  , 
(  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  N ) ) )
1211adantr 276 . . 3  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  ->  ( G  gsumg  ( k  e.  ( M ... N )  |->  .0.  )
)  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  N )
) )
13 simpr 110 . . . 4  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  ->  N  <  M
)
1413iftrued 3569 . . 3  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  N )
)  =  .0.  )
1512, 14eqtrd 2229 . 2  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  ->  ( G  gsumg  ( k  e.  ( M ... N )  |->  .0.  )
)  =  .0.  )
1611adantr 276 . . 3  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  ( G  gsumg  ( k  e.  ( M ... N )  |->  .0.  ) )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  N
) ) )
17 simpr 110 . . . 4  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  -.  N  <  M )
1817iffalsed 3572 . . 3  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  N )
)  =  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  N
) )
195adantr 276 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  M  e.  ZZ )
206adantr 276 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  N  e.  ZZ )
215zred 9450 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
226zred 9450 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
2321, 22lenltd 8146 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  -.  N  <  M ) )
2423biimpar 297 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  M  <_  N )
25 eluz2 9609 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
2619, 20, 24, 25syl3anbrc 1183 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  N  e.  ( ZZ>= `  M )
)
27 eluzfz2 10109 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
2826, 27syl 14 . . . 4  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  N  e.  ( M ... N ) )
294adantr 276 . . . 4  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  G  e.  Mnd )
30 fveqeq2 5568 . . . . . 6  |-  ( w  =  M  ->  (
(  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  w )  =  .0.  <->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  M )  =  .0.  ) )
3130imbi2d 230 . . . . 5  |-  ( w  =  M  ->  (
( G  e.  Mnd  ->  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  w )  =  .0.  )  <->  ( G  e.  Mnd  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  M
)  =  .0.  )
) )
32 fveqeq2 5568 . . . . . 6  |-  ( w  =  y  ->  (
(  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  w )  =  .0.  <->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  y )  =  .0.  ) )
3332imbi2d 230 . . . . 5  |-  ( w  =  y  ->  (
( G  e.  Mnd  ->  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  w )  =  .0.  )  <->  ( G  e.  Mnd  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  y
)  =  .0.  )
) )
34 fveqeq2 5568 . . . . . 6  |-  ( w  =  ( y  +  1 )  ->  (
(  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  w )  =  .0.  <->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  ( y  +  1 ) )  =  .0.  ) )
3534imbi2d 230 . . . . 5  |-  ( w  =  ( y  +  1 )  ->  (
( G  e.  Mnd  ->  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  w )  =  .0.  )  <->  ( G  e.  Mnd  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  (
y  +  1 ) )  =  .0.  )
) )
36 fveqeq2 5568 . . . . . 6  |-  ( w  =  N  ->  (
(  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  w )  =  .0.  <->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  N )  =  .0.  ) )
3736imbi2d 230 . . . . 5  |-  ( w  =  N  ->  (
( G  e.  Mnd  ->  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  w )  =  .0.  )  <->  ( G  e.  Mnd  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  N
)  =  .0.  )
) )
38 eluzel2 9608 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
3938adantr 276 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  G  e.  Mnd )  ->  M  e.  ZZ )
4039adantr 276 . . . . . . . . . . 11  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  G  e.  Mnd )  /\  u  e.  ( ZZ>=
`  M ) )  ->  M  e.  ZZ )
41 eluzelz 9612 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4241ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  G  e.  Mnd )  /\  u  e.  ( ZZ>=
`  M ) )  ->  N  e.  ZZ )
4340, 42fzfigd 10525 . . . . . . . . . 10  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  G  e.  Mnd )  /\  u  e.  ( ZZ>=
`  M ) )  ->  ( M ... N )  e.  Fin )
4443mptexd 5790 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  G  e.  Mnd )  /\  u  e.  ( ZZ>=
`  M ) )  ->  ( k  e.  ( M ... N
)  |->  .0.  )  e.  _V )
45 vex 2766 . . . . . . . . 9  |-  u  e. 
_V
46 fvexg 5578 . . . . . . . . 9  |-  ( ( ( k  e.  ( M ... N ) 
|->  .0.  )  e.  _V  /\  u  e.  _V )  ->  ( ( k  e.  ( M ... N
)  |->  .0.  ) `  u )  e.  _V )
4744, 45, 46sylancl 413 . . . . . . . 8  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  G  e.  Mnd )  /\  u  e.  ( ZZ>=
`  M ) )  ->  ( ( k  e.  ( M ... N )  |->  .0.  ) `  u )  e.  _V )
48 plusgslid 12800 . . . . . . . . . . 11  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4948slotex 12715 . . . . . . . . . 10  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
5049ad2antlr 489 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  G  e.  Mnd )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
51 simprr 531 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  G  e.  Mnd )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  v  e.  _V )
52 ovexg 5957 . . . . . . . . 9  |-  ( ( u  e.  _V  /\  ( +g  `  G )  e.  _V  /\  v  e.  _V )  ->  (
u ( +g  `  G
) v )  e. 
_V )
5345, 50, 51, 52mp3an2i 1353 . . . . . . . 8  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  G  e.  Mnd )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u
( +g  `  G ) v )  e.  _V )
5439, 47, 53seq3-1 10556 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  G  e.  Mnd )  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  M
)  =  ( ( k  e.  ( M ... N )  |->  .0.  ) `  M ) )
55 eqid 2196 . . . . . . . 8  |-  ( k  e.  ( M ... N )  |->  .0.  )  =  ( k  e.  ( M ... N
)  |->  .0.  )
56 eqidd 2197 . . . . . . . 8  |-  ( k  =  M  ->  .0.  =  .0.  )
57 eluzfz1 10108 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
5857adantr 276 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  G  e.  Mnd )  ->  M  e.  ( M ... N
) )
597adantl 277 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  G  e.  Mnd )  ->  .0.  e.  ( Base `  G
) )
6055, 56, 58, 59fvmptd3 5656 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  G  e.  Mnd )  ->  (
( k  e.  ( M ... N ) 
|->  .0.  ) `  M
)  =  .0.  )
6154, 60eqtrd 2229 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  G  e.  Mnd )  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  M
)  =  .0.  )
6261ex 115 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( G  e.  Mnd  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  M
)  =  .0.  )
)
63 elfzouz 10228 . . . . . . . . . . 11  |-  ( y  e.  ( M..^ N
)  ->  y  e.  ( ZZ>= `  M )
)
6463adantr 276 . . . . . . . . . 10  |-  ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  ->  y  e.  ( ZZ>= `  M )
)
65 elfzouz2 10239 . . . . . . . . . . . 12  |-  ( y  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  y )
)
66 uztrn 9620 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= `  y )  /\  y  e.  ( ZZ>= `  M )
)  ->  N  e.  ( ZZ>= `  M )
)
6765, 63, 66syl2anc 411 . . . . . . . . . . 11  |-  ( y  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  M )
)
6867, 47sylanl1 402 . . . . . . . . . 10  |-  ( ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  /\  u  e.  ( ZZ>=
`  M ) )  ->  ( ( k  e.  ( M ... N )  |->  .0.  ) `  u )  e.  _V )
6967, 53sylanl1 402 . . . . . . . . . 10  |-  ( ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u
( +g  `  G ) v )  e.  _V )
7064, 68, 69seq3p1 10559 . . . . . . . . 9  |-  ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  (
y  +  1 ) )  =  ( (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  y ) ( +g  `  G ) ( ( k  e.  ( M ... N )  |->  .0.  ) `  ( y  +  1 ) ) ) )
7170adantr 276 . . . . . . . 8  |-  ( ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  /\  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  y )  =  .0.  )  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  (
y  +  1 ) )  =  ( (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  y ) ( +g  `  G ) ( ( k  e.  ( M ... N )  |->  .0.  ) `  ( y  +  1 ) ) ) )
72 simpr 110 . . . . . . . . 9  |-  ( ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  /\  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  y )  =  .0.  )  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  y
)  =  .0.  )
73 eqidd 2197 . . . . . . . . . . 11  |-  ( k  =  ( y  +  1 )  ->  .0.  =  .0.  )
74 fzofzp1 10305 . . . . . . . . . . . 12  |-  ( y  e.  ( M..^ N
)  ->  ( y  +  1 )  e.  ( M ... N
) )
7574adantr 276 . . . . . . . . . . 11  |-  ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  ->  (
y  +  1 )  e.  ( M ... N ) )
767adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  ->  .0.  e.  ( Base `  G
) )
7755, 73, 75, 76fvmptd3 5656 . . . . . . . . . 10  |-  ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  ->  (
( k  e.  ( M ... N ) 
|->  .0.  ) `  (
y  +  1 ) )  =  .0.  )
7877adantr 276 . . . . . . . . 9  |-  ( ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  /\  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  y )  =  .0.  )  ->  (
( k  e.  ( M ... N ) 
|->  .0.  ) `  (
y  +  1 ) )  =  .0.  )
7972, 78oveq12d 5941 . . . . . . . 8  |-  ( ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  /\  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  y )  =  .0.  )  ->  (
(  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  y ) ( +g  `  G ) ( ( k  e.  ( M ... N )  |->  .0.  ) `  ( y  +  1 ) ) )  =  (  .0.  ( +g  `  G
)  .0.  ) )
801, 3, 2mndlid 13086 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  .0.  e.  ( Base `  G
) )  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
817, 80mpdan 421 . . . . . . . . 9  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
8281ad2antlr 489 . . . . . . . 8  |-  ( ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  /\  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  y )  =  .0.  )  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
8371, 79, 823eqtrd 2233 . . . . . . 7  |-  ( ( ( y  e.  ( M..^ N )  /\  G  e.  Mnd )  /\  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  y )  =  .0.  )  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  (
y  +  1 ) )  =  .0.  )
8483exp31 364 . . . . . 6  |-  ( y  e.  ( M..^ N
)  ->  ( G  e.  Mnd  ->  ( (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  y
)  =  .0.  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N
)  |->  .0.  ) ) `  ( y  +  1 ) )  =  .0.  ) ) )
8584a2d 26 . . . . 5  |-  ( y  e.  ( M..^ N
)  ->  ( ( G  e.  Mnd  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  y
)  =  .0.  )  ->  ( G  e.  Mnd  ->  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... N )  |->  .0.  )
) `  ( y  +  1 ) )  =  .0.  ) ) )
8631, 33, 35, 37, 62, 85fzind2 10317 . . . 4  |-  ( N  e.  ( M ... N )  ->  ( G  e.  Mnd  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  N
)  =  .0.  )
)
8728, 29, 86sylc 62 . . 3  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... N )  |->  .0.  ) ) `  N
)  =  .0.  )
8816, 18, 873eqtrd 2233 . 2  |-  ( ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  <  M
)  ->  ( G  gsumg  ( k  e.  ( M ... N )  |->  .0.  ) )  =  .0.  )
89 zdclt 9405 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
906, 5, 89syl2anc 411 . . 3  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  M )
91 exmiddc 837 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
9290, 91syl 14 . 2  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  \/  -.  N  <  M ) )
9315, 88, 92mpjaodan 799 1  |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  .0.  ) )  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763   ifcif 3562   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5923   Fincfn 6800   1c1 7882    + caddc 7884    < clt 8063    <_ cle 8064   ZZcz 9328   ZZ>=cuz 9603   ...cfz 10085  ..^cfzo 10219    seqcseq 10541   Basecbs 12688   +g cplusg 12765   0gc0g 12937    gsumg cgsu 12938   Mndcmnd 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-1o 6475  df-er 6593  df-en 6801  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-2 9051  df-n0 9252  df-z 9329  df-uz 9604  df-fz 10086  df-fzo 10220  df-seqfrec 10542  df-ndx 12691  df-slot 12692  df-base 12694  df-plusg 12778  df-0g 12939  df-igsum 12940  df-mgm 13009  df-sgrp 13055  df-mnd 13068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator