| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqid 2196 | 
. . . . 5
⊢
frec((𝑥 ∈
ℤ ↦ (𝑥 + 1)),
0) = frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)),
0) | 
| 2 |   | eqid 2196 | 
. . . . 5
⊢ (𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑛, 1o, ∅))) = (𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑛, 1o, ∅))) | 
| 3 |   | eqid 2196 | 
. . . . 5
⊢ (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑛, 1o, ∅))) ∘ ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {〈+∞, (ω
× {1o})〉}) = (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑛, 1o, ∅))) ∘ ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {〈+∞, (ω
× {1o})〉}) | 
| 4 | 1, 2, 3 | nninfctlemfo 12207 | 
. . . 4
⊢ (ω
∈ Omni → (((𝑛
∈ ω ↦ (𝑘
∈ ω ↦ if(𝑘
∈ 𝑛, 1o,
∅))) ∘ ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪
{〈+∞, (ω ×
{1o})〉}):ℕ0*–onto→ℕ∞) | 
| 5 |   | omex 4629 | 
. . . . . . . 8
⊢ ω
∈ V | 
| 6 | 5 | mptex 5788 | 
. . . . . . 7
⊢ (𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑛, 1o, ∅))) ∈
V | 
| 7 |   | frecex 6452 | 
. . . . . . . 8
⊢
frec((𝑥 ∈
ℤ ↦ (𝑥 + 1)),
0) ∈ V | 
| 8 | 7 | cnvex 5208 | 
. . . . . . 7
⊢ ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∈ V | 
| 9 | 6, 8 | coex 5215 | 
. . . . . 6
⊢ ((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑛, 1o, ∅))) ∘ ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∈ V | 
| 10 |   | pnfex 8080 | 
. . . . . . . 8
⊢ +∞
∈ V | 
| 11 |   | 1oex 6482 | 
. . . . . . . . . 10
⊢
1o ∈ V | 
| 12 | 11 | snex 4218 | 
. . . . . . . . 9
⊢
{1o} ∈ V | 
| 13 | 5, 12 | xpex 4778 | 
. . . . . . . 8
⊢ (ω
× {1o}) ∈ V | 
| 14 | 10, 13 | opex 4262 | 
. . . . . . 7
⊢
〈+∞, (ω × {1o})〉 ∈
V | 
| 15 | 14 | snex 4218 | 
. . . . . 6
⊢
{〈+∞, (ω × {1o})〉} ∈
V | 
| 16 | 9, 15 | unex 4476 | 
. . . . 5
⊢ (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑛, 1o, ∅))) ∘ ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {〈+∞, (ω
× {1o})〉}) ∈ V | 
| 17 |   | foeq1 5476 | 
. . . . 5
⊢ (𝑓 = (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑛, 1o, ∅))) ∘ ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {〈+∞, (ω
× {1o})〉}) → (𝑓:ℕ0*–onto→ℕ∞ ↔
(((𝑛 ∈ ω ↦
(𝑘 ∈ ω ↦
if(𝑘 ∈ 𝑛, 1o, ∅)))
∘ ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {〈+∞, (ω
× {1o})〉}):ℕ0*–onto→ℕ∞)) | 
| 18 | 16, 17 | spcev 2859 | 
. . . 4
⊢ ((((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑛, 1o, ∅))) ∘ ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {〈+∞, (ω
× {1o})〉}):ℕ0*–onto→ℕ∞ →
∃𝑓 𝑓:ℕ0*–onto→ℕ∞) | 
| 19 |   | xnn0nnen 10529 | 
. . . . . . . . 9
⊢
ℕ0* ≈ ℕ | 
| 20 |   | nnenom 10526 | 
. . . . . . . . 9
⊢ ℕ
≈ ω | 
| 21 | 19, 20 | entr2i 6846 | 
. . . . . . . 8
⊢ ω
≈ ℕ0* | 
| 22 |   | bren 6806 | 
. . . . . . . 8
⊢ (ω
≈ ℕ0* ↔ ∃𝑔 𝑔:ω–1-1-onto→ℕ0*) | 
| 23 | 21, 22 | mpbi 145 | 
. . . . . . 7
⊢
∃𝑔 𝑔:ω–1-1-onto→ℕ0* | 
| 24 |   | f1ofo 5511 | 
. . . . . . 7
⊢ (𝑔:ω–1-1-onto→ℕ0* → 𝑔:ω–onto→ℕ0*) | 
| 25 | 23, 24 | eximii 1616 | 
. . . . . 6
⊢
∃𝑔 𝑔:ω–onto→ℕ0* | 
| 26 |   | foco 5491 | 
. . . . . . . . 9
⊢ ((𝑓:ℕ0*–onto→ℕ∞ ∧ 𝑔:ω–onto→ℕ0*) → (𝑓 ∘ 𝑔):ω–onto→ℕ∞) | 
| 27 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑓 ∈ V | 
| 28 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑔 ∈ V | 
| 29 | 27, 28 | coex 5215 | 
. . . . . . . . . 10
⊢ (𝑓 ∘ 𝑔) ∈ V | 
| 30 |   | foeq1 5476 | 
. . . . . . . . . 10
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:ω–onto→ℕ∞ ↔ (𝑓 ∘ 𝑔):ω–onto→ℕ∞)) | 
| 31 | 29, 30 | spcev 2859 | 
. . . . . . . . 9
⊢ ((𝑓 ∘ 𝑔):ω–onto→ℕ∞ → ∃ℎ ℎ:ω–onto→ℕ∞) | 
| 32 | 26, 31 | syl 14 | 
. . . . . . . 8
⊢ ((𝑓:ℕ0*–onto→ℕ∞ ∧ 𝑔:ω–onto→ℕ0*) →
∃ℎ ℎ:ω–onto→ℕ∞) | 
| 33 | 32 | expcom 116 | 
. . . . . . 7
⊢ (𝑔:ω–onto→ℕ0* → (𝑓:ℕ0*–onto→ℕ∞ →
∃ℎ ℎ:ω–onto→ℕ∞)) | 
| 34 | 33 | exlimiv 1612 | 
. . . . . 6
⊢
(∃𝑔 𝑔:ω–onto→ℕ0* → (𝑓:ℕ0*–onto→ℕ∞ →
∃ℎ ℎ:ω–onto→ℕ∞)) | 
| 35 | 25, 34 | ax-mp 5 | 
. . . . 5
⊢ (𝑓:ℕ0*–onto→ℕ∞ →
∃ℎ ℎ:ω–onto→ℕ∞) | 
| 36 | 35 | exlimiv 1612 | 
. . . 4
⊢
(∃𝑓 𝑓:ℕ0*–onto→ℕ∞ →
∃ℎ ℎ:ω–onto→ℕ∞) | 
| 37 | 4, 18, 36 | 3syl 17 | 
. . 3
⊢ (ω
∈ Omni → ∃ℎ
ℎ:ω–onto→ℕ∞) | 
| 38 |   | foeq1 5476 | 
. . . 4
⊢ (ℎ = 𝑓 → (ℎ:ω–onto→ℕ∞ ↔ 𝑓:ω–onto→ℕ∞)) | 
| 39 | 38 | cbvexv 1933 | 
. . 3
⊢
(∃ℎ ℎ:ω–onto→ℕ∞ ↔ ∃𝑓 𝑓:ω–onto→ℕ∞) | 
| 40 | 37, 39 | sylib 122 | 
. 2
⊢ (ω
∈ Omni → ∃𝑓
𝑓:ω–onto→ℕ∞) | 
| 41 |   | infnninf 7190 | 
. . . 4
⊢ (𝑖 ∈ ω ↦
1o) ∈ ℕ∞ | 
| 42 |   | elex2 2779 | 
. . . 4
⊢ ((𝑖 ∈ ω ↦
1o) ∈ ℕ∞ → ∃𝑗 𝑗 ∈
ℕ∞) | 
| 43 | 41, 42 | ax-mp 5 | 
. . 3
⊢
∃𝑗 𝑗 ∈
ℕ∞ | 
| 44 |   | ctm 7175 | 
. . 3
⊢
(∃𝑗 𝑗 ∈
ℕ∞ → (∃𝑓 𝑓:ω–onto→(ℕ∞ ⊔
1o) ↔ ∃𝑓 𝑓:ω–onto→ℕ∞)) | 
| 45 | 43, 44 | ax-mp 5 | 
. 2
⊢
(∃𝑓 𝑓:ω–onto→(ℕ∞ ⊔
1o) ↔ ∃𝑓 𝑓:ω–onto→ℕ∞) | 
| 46 | 40, 45 | sylibr 134 | 
1
⊢ (ω
∈ Omni → ∃𝑓
𝑓:ω–onto→(ℕ∞ ⊔
1o)) |