ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfct GIF version

Theorem nninfct 12528
Description: The limited principle of omniscience (LPO) implies that is countable. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nninfct (ω ∈ Omni → ∃𝑓 𝑓:ω–onto→(ℕ ⊔ 1o))

Proof of Theorem nninfct
Dummy variables 𝑔 𝑖 𝑗 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2209 . . . . 5 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2 eqid 2209 . . . . 5 (𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) = (𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅)))
3 eqid 2209 . . . . 5 (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}) = (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩})
41, 2, 3nninfctlemfo 12527 . . . 4 (ω ∈ Omni → (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}):ℕ0*onto→ℕ)
5 omex 4662 . . . . . . . 8 ω ∈ V
65mptex 5838 . . . . . . 7 (𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∈ V
7 frecex 6510 . . . . . . . 8 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∈ V
87cnvex 5243 . . . . . . 7 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∈ V
96, 8coex 5250 . . . . . 6 ((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∈ V
10 pnfex 8168 . . . . . . . 8 +∞ ∈ V
11 1oex 6540 . . . . . . . . . 10 1o ∈ V
1211snex 4248 . . . . . . . . 9 {1o} ∈ V
135, 12xpex 4811 . . . . . . . 8 (ω × {1o}) ∈ V
1410, 13opex 4294 . . . . . . 7 ⟨+∞, (ω × {1o})⟩ ∈ V
1514snex 4248 . . . . . 6 {⟨+∞, (ω × {1o})⟩} ∈ V
169, 15unex 4509 . . . . 5 (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}) ∈ V
17 foeq1 5520 . . . . 5 (𝑓 = (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}) → (𝑓:ℕ0*onto→ℕ ↔ (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}):ℕ0*onto→ℕ))
1816, 17spcev 2878 . . . 4 ((((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}):ℕ0*onto→ℕ → ∃𝑓 𝑓:ℕ0*onto→ℕ)
19 xnn0nnen 10626 . . . . . . . . 9 0* ≈ ℕ
20 nnenom 10623 . . . . . . . . 9 ℕ ≈ ω
2119, 20entr2i 6909 . . . . . . . 8 ω ≈ ℕ0*
22 bren 6865 . . . . . . . 8 (ω ≈ ℕ0* ↔ ∃𝑔 𝑔:ω–1-1-onto→ℕ0*)
2321, 22mpbi 145 . . . . . . 7 𝑔 𝑔:ω–1-1-onto→ℕ0*
24 f1ofo 5555 . . . . . . 7 (𝑔:ω–1-1-onto→ℕ0*𝑔:ω–onto→ℕ0*)
2523, 24eximii 1628 . . . . . 6 𝑔 𝑔:ω–onto→ℕ0*
26 foco 5535 . . . . . . . . 9 ((𝑓:ℕ0*onto→ℕ𝑔:ω–onto→ℕ0*) → (𝑓𝑔):ω–onto→ℕ)
27 vex 2782 . . . . . . . . . . 11 𝑓 ∈ V
28 vex 2782 . . . . . . . . . . 11 𝑔 ∈ V
2927, 28coex 5250 . . . . . . . . . 10 (𝑓𝑔) ∈ V
30 foeq1 5520 . . . . . . . . . 10 ( = (𝑓𝑔) → (:ω–onto→ℕ ↔ (𝑓𝑔):ω–onto→ℕ))
3129, 30spcev 2878 . . . . . . . . 9 ((𝑓𝑔):ω–onto→ℕ → ∃ :ω–onto→ℕ)
3226, 31syl 14 . . . . . . . 8 ((𝑓:ℕ0*onto→ℕ𝑔:ω–onto→ℕ0*) → ∃ :ω–onto→ℕ)
3332expcom 116 . . . . . . 7 (𝑔:ω–onto→ℕ0* → (𝑓:ℕ0*onto→ℕ → ∃ :ω–onto→ℕ))
3433exlimiv 1624 . . . . . 6 (∃𝑔 𝑔:ω–onto→ℕ0* → (𝑓:ℕ0*onto→ℕ → ∃ :ω–onto→ℕ))
3525, 34ax-mp 5 . . . . 5 (𝑓:ℕ0*onto→ℕ → ∃ :ω–onto→ℕ)
3635exlimiv 1624 . . . 4 (∃𝑓 𝑓:ℕ0*onto→ℕ → ∃ :ω–onto→ℕ)
374, 18, 363syl 17 . . 3 (ω ∈ Omni → ∃ :ω–onto→ℕ)
38 foeq1 5520 . . . 4 ( = 𝑓 → (:ω–onto→ℕ𝑓:ω–onto→ℕ))
3938cbvexv 1945 . . 3 (∃ :ω–onto→ℕ ↔ ∃𝑓 𝑓:ω–onto→ℕ)
4037, 39sylib 122 . 2 (ω ∈ Omni → ∃𝑓 𝑓:ω–onto→ℕ)
41 infnninf 7259 . . . 4 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
42 elex2 2796 . . . 4 ((𝑖 ∈ ω ↦ 1o) ∈ ℕ → ∃𝑗 𝑗 ∈ ℕ)
4341, 42ax-mp 5 . . 3 𝑗 𝑗 ∈ ℕ
44 ctm 7244 . . 3 (∃𝑗 𝑗 ∈ ℕ → (∃𝑓 𝑓:ω–onto→(ℕ ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ℕ))
4543, 44ax-mp 5 . 2 (∃𝑓 𝑓:ω–onto→(ℕ ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ℕ)
4640, 45sylibr 134 1 (ω ∈ Omni → ∃𝑓 𝑓:ω–onto→(ℕ ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1518  wcel 2180  cun 3175  c0 3471  ifcif 3582  {csn 3646  cop 3649   class class class wbr 4062  cmpt 4124  ωcom 4659   × cxp 4694  ccnv 4695  ccom 4700  ontowfo 5292  1-1-ontowf1o 5293  (class class class)co 5974  freccfrec 6506  1oc1o 6525  cen 6855  cdju 7172  xnninf 7254  Omnicomni 7269  0cc0 7967  1c1 7968   + caddc 7970  +∞cpnf 8146  cn 9078  0*cxnn0 9400  cz 9414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-2o 6533  df-er 6650  df-map 6767  df-en 6858  df-sup 7119  df-inf 7120  df-dju 7173  df-inl 7182  df-inr 7183  df-case 7219  df-nninf 7255  df-omni 7270  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-xnn0 9401  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307
This theorem is referenced by:  nnnninfen  16298
  Copyright terms: Public domain W3C validator