ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfct GIF version

Theorem nninfct 12208
Description: The limited principle of omniscience (LPO) implies that is countable. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nninfct (ω ∈ Omni → ∃𝑓 𝑓:ω–onto→(ℕ ⊔ 1o))

Proof of Theorem nninfct
Dummy variables 𝑔 𝑖 𝑗 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2 eqid 2196 . . . . 5 (𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) = (𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅)))
3 eqid 2196 . . . . 5 (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}) = (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩})
41, 2, 3nninfctlemfo 12207 . . . 4 (ω ∈ Omni → (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}):ℕ0*onto→ℕ)
5 omex 4629 . . . . . . . 8 ω ∈ V
65mptex 5788 . . . . . . 7 (𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∈ V
7 frecex 6452 . . . . . . . 8 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∈ V
87cnvex 5208 . . . . . . 7 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∈ V
96, 8coex 5215 . . . . . 6 ((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∈ V
10 pnfex 8080 . . . . . . . 8 +∞ ∈ V
11 1oex 6482 . . . . . . . . . 10 1o ∈ V
1211snex 4218 . . . . . . . . 9 {1o} ∈ V
135, 12xpex 4778 . . . . . . . 8 (ω × {1o}) ∈ V
1410, 13opex 4262 . . . . . . 7 ⟨+∞, (ω × {1o})⟩ ∈ V
1514snex 4218 . . . . . 6 {⟨+∞, (ω × {1o})⟩} ∈ V
169, 15unex 4476 . . . . 5 (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}) ∈ V
17 foeq1 5476 . . . . 5 (𝑓 = (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}) → (𝑓:ℕ0*onto→ℕ ↔ (((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}):ℕ0*onto→ℕ))
1816, 17spcev 2859 . . . 4 ((((𝑛 ∈ ω ↦ (𝑘 ∈ ω ↦ if(𝑘𝑛, 1o, ∅))) ∘ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) ∪ {⟨+∞, (ω × {1o})⟩}):ℕ0*onto→ℕ → ∃𝑓 𝑓:ℕ0*onto→ℕ)
19 xnn0nnen 10529 . . . . . . . . 9 0* ≈ ℕ
20 nnenom 10526 . . . . . . . . 9 ℕ ≈ ω
2119, 20entr2i 6846 . . . . . . . 8 ω ≈ ℕ0*
22 bren 6806 . . . . . . . 8 (ω ≈ ℕ0* ↔ ∃𝑔 𝑔:ω–1-1-onto→ℕ0*)
2321, 22mpbi 145 . . . . . . 7 𝑔 𝑔:ω–1-1-onto→ℕ0*
24 f1ofo 5511 . . . . . . 7 (𝑔:ω–1-1-onto→ℕ0*𝑔:ω–onto→ℕ0*)
2523, 24eximii 1616 . . . . . 6 𝑔 𝑔:ω–onto→ℕ0*
26 foco 5491 . . . . . . . . 9 ((𝑓:ℕ0*onto→ℕ𝑔:ω–onto→ℕ0*) → (𝑓𝑔):ω–onto→ℕ)
27 vex 2766 . . . . . . . . . . 11 𝑓 ∈ V
28 vex 2766 . . . . . . . . . . 11 𝑔 ∈ V
2927, 28coex 5215 . . . . . . . . . 10 (𝑓𝑔) ∈ V
30 foeq1 5476 . . . . . . . . . 10 ( = (𝑓𝑔) → (:ω–onto→ℕ ↔ (𝑓𝑔):ω–onto→ℕ))
3129, 30spcev 2859 . . . . . . . . 9 ((𝑓𝑔):ω–onto→ℕ → ∃ :ω–onto→ℕ)
3226, 31syl 14 . . . . . . . 8 ((𝑓:ℕ0*onto→ℕ𝑔:ω–onto→ℕ0*) → ∃ :ω–onto→ℕ)
3332expcom 116 . . . . . . 7 (𝑔:ω–onto→ℕ0* → (𝑓:ℕ0*onto→ℕ → ∃ :ω–onto→ℕ))
3433exlimiv 1612 . . . . . 6 (∃𝑔 𝑔:ω–onto→ℕ0* → (𝑓:ℕ0*onto→ℕ → ∃ :ω–onto→ℕ))
3525, 34ax-mp 5 . . . . 5 (𝑓:ℕ0*onto→ℕ → ∃ :ω–onto→ℕ)
3635exlimiv 1612 . . . 4 (∃𝑓 𝑓:ℕ0*onto→ℕ → ∃ :ω–onto→ℕ)
374, 18, 363syl 17 . . 3 (ω ∈ Omni → ∃ :ω–onto→ℕ)
38 foeq1 5476 . . . 4 ( = 𝑓 → (:ω–onto→ℕ𝑓:ω–onto→ℕ))
3938cbvexv 1933 . . 3 (∃ :ω–onto→ℕ ↔ ∃𝑓 𝑓:ω–onto→ℕ)
4037, 39sylib 122 . 2 (ω ∈ Omni → ∃𝑓 𝑓:ω–onto→ℕ)
41 infnninf 7190 . . . 4 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
42 elex2 2779 . . . 4 ((𝑖 ∈ ω ↦ 1o) ∈ ℕ → ∃𝑗 𝑗 ∈ ℕ)
4341, 42ax-mp 5 . . 3 𝑗 𝑗 ∈ ℕ
44 ctm 7175 . . 3 (∃𝑗 𝑗 ∈ ℕ → (∃𝑓 𝑓:ω–onto→(ℕ ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ℕ))
4543, 44ax-mp 5 . 2 (∃𝑓 𝑓:ω–onto→(ℕ ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ℕ)
4640, 45sylibr 134 1 (ω ∈ Omni → ∃𝑓 𝑓:ω–onto→(ℕ ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1506  wcel 2167  cun 3155  c0 3450  ifcif 3561  {csn 3622  cop 3625   class class class wbr 4033  cmpt 4094  ωcom 4626   × cxp 4661  ccnv 4662  ccom 4667  ontowfo 5256  1-1-ontowf1o 5257  (class class class)co 5922  freccfrec 6448  1oc1o 6467  cen 6797  cdju 7103  xnninf 7185  Omnicomni 7200  0cc0 7879  1c1 7880   + caddc 7882  +∞cpnf 8058  cn 8990  0*cxnn0 9312  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-map 6709  df-en 6800  df-sup 7050  df-inf 7051  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150  df-nninf 7186  df-omni 7201  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-xnn0 9313  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  nnnninfen  15665
  Copyright terms: Public domain W3C validator