| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > q1mod | GIF version | ||
| Description: Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Jim Kingdon, 21-Oct-2021.) |
| Ref | Expression |
|---|---|
| q1mod | ⊢ ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9355 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | zq 9703 | . . 3 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
| 3 | 1, 2 | mp1i 10 | . 2 ⊢ ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → 1 ∈ ℚ) |
| 4 | simpl 109 | . 2 ⊢ ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → 𝑁 ∈ ℚ) | |
| 5 | 0le1 8511 | . . 3 ⊢ 0 ≤ 1 | |
| 6 | 5 | a1i 9 | . 2 ⊢ ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → 0 ≤ 1) |
| 7 | simpr 110 | . 2 ⊢ ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → 1 < 𝑁) | |
| 8 | modqid 10444 | . 2 ⊢ (((1 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ 1 ∧ 1 < 𝑁)) → (1 mod 𝑁) = 1) | |
| 9 | 3, 4, 6, 7, 8 | syl22anc 1250 | 1 ⊢ ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5923 0cc0 7882 1c1 7883 < clt 8064 ≤ cle 8065 ℤcz 9329 ℚcq 9696 mod cmo 10417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-n0 9253 df-z 9330 df-q 9697 df-rp 9732 df-fl 10363 df-mod 10418 |
| This theorem is referenced by: mulp1mod1 10460 p1modz1 11962 modm1div 11968 vfermltl 12431 pockthlem 12536 pockthi 12538 wilthlem1 15242 lgsne0 15305 gausslemma2dlem0i 15324 gausslemma2dlem7 15335 gausslemma2d 15336 |
| Copyright terms: Public domain | W3C validator |