Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnap0d | GIF version |
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnap0d | ⊢ (𝜑 → 𝐴 # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnap0 8882 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 # 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3981 0cc0 7749 # cap 8475 ℕcn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-inn 8854 |
This theorem is referenced by: qtri3or 10174 qbtwnrelemcalc 10187 intfracq 10251 flqdiv 10252 modqmulnn 10273 facndiv 10648 bcn0 10664 bcn1 10667 bcm1k 10669 bcp1n 10670 bcp1nk 10671 bcval5 10672 bcpasc 10675 permnn 10680 divcnv 11434 trireciplem 11437 trirecip 11438 expcnvap0 11439 geo2sum 11451 geo2lim 11453 cvgratnnlemfm 11466 cvgratnnlemrate 11467 mertenslemi1 11472 eftabs 11593 efcllemp 11595 ege2le3 11608 efcj 11610 efaddlem 11611 eftlub 11627 eirraplem 11713 dvdsflip 11785 dvdsgcdidd 11923 mulgcd 11945 gcddiv 11948 sqgcd 11958 lcmgcdlem 12005 qredeu 12025 prmind2 12048 isprm5lem 12069 divgcdodd 12071 sqrt2irrlem 12089 oddpwdclemxy 12097 oddpwdclemodd 12100 oddpwdclemdc 12101 sqrt2irraplemnn 12107 sqrt2irrap 12108 qmuldeneqnum 12123 divnumden 12124 numdensq 12130 hashdvds 12149 phiprmpw 12150 pythagtriplem19 12210 pcprendvds2 12219 pcpremul 12221 pceulem 12222 pceu 12223 pcdiv 12230 pcqmul 12231 pcid 12251 pc2dvds 12257 dvdsprmpweqle 12264 pcaddlem 12266 pcadd 12267 oddprmdvds 12280 pockthlem 12282 4sqlem5 12308 mul4sqlem 12319 logbgcd1irraplemexp 13486 logbgcd1irraplemap 13487 2sqlem3 13553 2sqlem8 13559 cvgcmp2nlemabs 13871 redcwlpolemeq1 13893 |
Copyright terms: Public domain | W3C validator |