![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnap0d | GIF version |
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnap0d | ⊢ (𝜑 → 𝐴 # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnap0 9013 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 # 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4030 0cc0 7874 # cap 8602 ℕcn 8984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-inn 8985 |
This theorem is referenced by: qtri3or 10313 qbtwnrelemcalc 10327 intfracq 10394 flqdiv 10395 modqmulnn 10416 facndiv 10813 bcn0 10829 bcn1 10832 bcm1k 10834 bcp1n 10835 bcp1nk 10836 bcval5 10837 bcpasc 10840 permnn 10845 divcnv 11643 trireciplem 11646 trirecip 11647 expcnvap0 11648 geo2sum 11660 geo2lim 11662 cvgratnnlemfm 11675 cvgratnnlemrate 11676 mertenslemi1 11681 eftabs 11802 efcllemp 11804 ege2le3 11817 efcj 11819 efaddlem 11820 eftlub 11836 eirraplem 11923 dvdsflip 11996 dvdsgcdidd 12134 mulgcd 12156 gcddiv 12159 sqgcd 12169 lcmgcdlem 12218 qredeu 12238 prmind2 12261 isprm5lem 12282 divgcdodd 12284 sqrt2irrlem 12302 oddpwdclemxy 12310 oddpwdclemodd 12313 oddpwdclemdc 12314 sqrt2irraplemnn 12320 sqrt2irrap 12321 qmuldeneqnum 12336 divnumden 12337 numdensq 12343 hashdvds 12362 phiprmpw 12363 pythagtriplem19 12423 pcprendvds2 12432 pcpremul 12434 pceulem 12435 pceu 12436 pcdiv 12443 pcqmul 12444 pcid 12465 pc2dvds 12471 dvdsprmpweqle 12478 pcaddlem 12480 pcadd 12481 oddprmdvds 12495 pockthlem 12497 4sqlem5 12523 mul4sqlem 12534 4sqlem12 12543 4sqlem15 12546 4sqlem16 12547 4sqlem17 12548 znrrg 14159 logbgcd1irraplemexp 15141 logbgcd1irraplemap 15142 lgseisenlem2 15228 lgseisenlem4 15230 lgsquadlem1 15234 m1lgs 15242 2sqlem3 15274 2sqlem8 15280 cvgcmp2nlemabs 15592 redcwlpolemeq1 15614 |
Copyright terms: Public domain | W3C validator |