![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnap0d | GIF version |
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnap0d | ⊢ (𝜑 → 𝐴 # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnap0 9011 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 # 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4029 0cc0 7872 # cap 8600 ℕcn 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-inn 8983 |
This theorem is referenced by: qtri3or 10310 qbtwnrelemcalc 10324 intfracq 10391 flqdiv 10392 modqmulnn 10413 facndiv 10810 bcn0 10826 bcn1 10829 bcm1k 10831 bcp1n 10832 bcp1nk 10833 bcval5 10834 bcpasc 10837 permnn 10842 divcnv 11640 trireciplem 11643 trirecip 11644 expcnvap0 11645 geo2sum 11657 geo2lim 11659 cvgratnnlemfm 11672 cvgratnnlemrate 11673 mertenslemi1 11678 eftabs 11799 efcllemp 11801 ege2le3 11814 efcj 11816 efaddlem 11817 eftlub 11833 eirraplem 11920 dvdsflip 11993 dvdsgcdidd 12131 mulgcd 12153 gcddiv 12156 sqgcd 12166 lcmgcdlem 12215 qredeu 12235 prmind2 12258 isprm5lem 12279 divgcdodd 12281 sqrt2irrlem 12299 oddpwdclemxy 12307 oddpwdclemodd 12310 oddpwdclemdc 12311 sqrt2irraplemnn 12317 sqrt2irrap 12318 qmuldeneqnum 12333 divnumden 12334 numdensq 12340 hashdvds 12359 phiprmpw 12360 pythagtriplem19 12420 pcprendvds2 12429 pcpremul 12431 pceulem 12432 pceu 12433 pcdiv 12440 pcqmul 12441 pcid 12462 pc2dvds 12468 dvdsprmpweqle 12475 pcaddlem 12477 pcadd 12478 oddprmdvds 12492 pockthlem 12494 4sqlem5 12520 mul4sqlem 12531 4sqlem12 12540 4sqlem15 12543 4sqlem16 12544 4sqlem17 12545 znrrg 14148 logbgcd1irraplemexp 15100 logbgcd1irraplemap 15101 lgseisenlem2 15187 lgseisenlem4 15189 lgsquadlem1 15191 m1lgs 15192 2sqlem3 15204 2sqlem8 15210 cvgcmp2nlemabs 15522 redcwlpolemeq1 15544 |
Copyright terms: Public domain | W3C validator |