ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnap0d GIF version

Theorem nnap0d 8726
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.)
Hypothesis
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
nnap0d (𝜑𝐴 # 0)

Proof of Theorem nnap0d
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnap0 8709 . 2 (𝐴 ∈ ℕ → 𝐴 # 0)
31, 2syl 14 1 (𝜑𝐴 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1463   class class class wbr 3897  0cc0 7584   # cap 8306  cn 8680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-inn 8681
This theorem is referenced by:  qtri3or  9971  qbtwnrelemcalc  9984  intfracq  10044  flqdiv  10045  modqmulnn  10066  facndiv  10436  bcn0  10452  bcn1  10455  bcm1k  10457  bcp1n  10458  bcp1nk  10459  bcval5  10460  bcpasc  10463  permnn  10468  divcnv  11217  trireciplem  11220  trirecip  11221  expcnvap0  11222  geo2sum  11234  geo2lim  11236  cvgratnnlemfm  11249  cvgratnnlemrate  11250  mertenslemi1  11255  eftabs  11272  efcllemp  11274  ege2le3  11287  efcj  11289  efaddlem  11290  eftlub  11306  eirraplem  11390  dvdsflip  11456  dvdsgcdidd  11589  mulgcd  11611  gcddiv  11614  sqgcd  11624  lcmgcdlem  11665  qredeu  11685  prmind2  11708  divgcdodd  11728  sqrt2irrlem  11746  oddpwdclemxy  11753  oddpwdclemodd  11756  oddpwdclemdc  11757  sqrt2irraplemnn  11763  sqrt2irrap  11764  qmuldeneqnum  11779  divnumden  11780  numdensq  11786  hashdvds  11803  phiprmpw  11804  cvgcmp2nlemabs  13061
  Copyright terms: Public domain W3C validator