Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsgcdidd | GIF version |
Description: The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
dvdsgcdidd.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
dvdsgcdidd.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
dvdsgcdidd.3 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
Ref | Expression |
---|---|
dvdsgcdidd | ⊢ (𝜑 → (𝑀 gcd 𝑁) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsgcdidd.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
2 | 1 | zcnd 9270 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
3 | dvdsgcdidd.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | 3 | nncnd 8830 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
5 | 3 | nnap0d 8862 | . . . 4 ⊢ (𝜑 → 𝑀 # 0) |
6 | 2, 4, 5 | divcanap1d 8647 | . . 3 ⊢ (𝜑 → ((𝑁 / 𝑀) · 𝑀) = 𝑁) |
7 | 6 | oveq2d 5834 | . 2 ⊢ (𝜑 → (𝑀 gcd ((𝑁 / 𝑀) · 𝑀)) = (𝑀 gcd 𝑁)) |
8 | 3 | nnnn0d 9126 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
9 | dvdsgcdidd.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∥ 𝑁) | |
10 | 3 | nnzd 9268 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
11 | 3 | nnne0d 8861 | . . . . 5 ⊢ (𝜑 → 𝑀 ≠ 0) |
12 | dvdsval2 11668 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | |
13 | 10, 11, 1, 12 | syl3anc 1220 | . . . 4 ⊢ (𝜑 → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
14 | 9, 13 | mpbid 146 | . . 3 ⊢ (𝜑 → (𝑁 / 𝑀) ∈ ℤ) |
15 | 8, 14 | gcdmultipled 11857 | . 2 ⊢ (𝜑 → (𝑀 gcd ((𝑁 / 𝑀) · 𝑀)) = 𝑀) |
16 | 7, 15 | eqtr3d 2192 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 𝑀) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 class class class wbr 3965 (class class class)co 5818 0cc0 7715 · cmul 7720 / cdiv 8528 ℕcn 8816 ℤcz 9150 ∥ cdvds 11665 gcd cgcd 11810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 ax-arch 7834 ax-caucvg 7835 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-frec 6332 df-sup 6920 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-n0 9074 df-z 9151 df-uz 9423 df-q 9511 df-rp 9543 df-fz 9895 df-fzo 10024 df-fl 10151 df-mod 10204 df-seqfrec 10327 df-exp 10401 df-cj 10724 df-re 10725 df-im 10726 df-rsqrt 10880 df-abs 10881 df-dvds 11666 df-gcd 11811 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |