| Step | Hyp | Ref
| Expression |
| 1 | | 2z 9371 |
. . . . . 6
⊢ 2 ∈
ℤ |
| 2 | 1 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ∈
ℤ) |
| 3 | | nnz 9362 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 4 | 3 | adantr 276 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈
ℤ) |
| 5 | | hash2 10921 |
. . . . . . 7
⊢
(♯‘2o) = 2 |
| 6 | | isidom 13908 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) |
| 7 | 6 | simprbi 275 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ IDomn → 𝑌 ∈ Domn) |
| 8 | | domnnzr 13902 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Domn → 𝑌 ∈ NzRing) |
| 9 | 7, 8 | syl 14 |
. . . . . . . . . 10
⊢ (𝑌 ∈ IDomn → 𝑌 ∈ NzRing) |
| 10 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 11 | 10 | isnzr2 13816 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o
≼ (Base‘𝑌))) |
| 12 | 11 | simprbi 275 |
. . . . . . . . . 10
⊢ (𝑌 ∈ NzRing →
2o ≼ (Base‘𝑌)) |
| 13 | 9, 12 | syl 14 |
. . . . . . . . 9
⊢ (𝑌 ∈ IDomn →
2o ≼ (Base‘𝑌)) |
| 14 | 13 | adantl 277 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
2o ≼ (Base‘𝑌)) |
| 15 | | 2onn 6588 |
. . . . . . . . . 10
⊢
2o ∈ ω |
| 16 | | nnfi 6942 |
. . . . . . . . . 10
⊢
(2o ∈ ω → 2o ∈
Fin) |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . . 9
⊢
2o ∈ Fin |
| 18 | | zntos.y |
. . . . . . . . . . 11
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
| 19 | 18, 10 | znfi 14287 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(Base‘𝑌) ∈
Fin) |
| 20 | 19 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
(Base‘𝑌) ∈
Fin) |
| 21 | | fihashdom 10912 |
. . . . . . . . 9
⊢
((2o ∈ Fin ∧ (Base‘𝑌) ∈ Fin) →
((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼
(Base‘𝑌))) |
| 22 | 17, 20, 21 | sylancr 414 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼
(Base‘𝑌))) |
| 23 | 14, 22 | mpbird 167 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
(♯‘2o) ≤ (♯‘(Base‘𝑌))) |
| 24 | 5, 23 | eqbrtrrid 4070 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤
(♯‘(Base‘𝑌))) |
| 25 | 18, 10 | znhash 14288 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(♯‘(Base‘𝑌)) = 𝑁) |
| 26 | 25 | adantr 276 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
(♯‘(Base‘𝑌)) = 𝑁) |
| 27 | 24, 26 | breqtrd 4060 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤
𝑁) |
| 28 | | eluz2 9624 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤
𝑁)) |
| 29 | 2, 4, 27, 28 | syl3anbrc 1183 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈
(ℤ≥‘2)) |
| 30 | | nncn 9015 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 31 | 30 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∈ ℂ) |
| 32 | | nncn 9015 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℂ) |
| 33 | 32 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∈ ℂ) |
| 34 | | nnap0 9036 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ → 𝑥 # 0) |
| 35 | 34 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 # 0) |
| 36 | 31, 33, 35 | divcanap1d 8835 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((𝑁 / 𝑥) · 𝑥) = 𝑁) |
| 37 | 36 | fveq2d 5565 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = ((ℤRHom‘𝑌)‘𝑁)) |
| 38 | 7 | ad2antlr 489 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑌 ∈ Domn) |
| 39 | | domnring 13903 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ Domn → 𝑌 ∈ Ring) |
| 40 | 38, 39 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑌 ∈ Ring) |
| 41 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(ℤRHom‘𝑌) = (ℤRHom‘𝑌) |
| 42 | 41 | zrhrhm 14255 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring →
(ℤRHom‘𝑌)
∈ (ℤring RingHom 𝑌)) |
| 43 | 40, 42 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (ℤRHom‘𝑌) ∈ (ℤring
RingHom 𝑌)) |
| 44 | | simprr 531 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∥ 𝑁) |
| 45 | | nnz 9362 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
| 46 | 45 | ad2antrl 490 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∈ ℤ) |
| 47 | | nnne0 9035 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) |
| 48 | 47 | ad2antrl 490 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ≠ 0) |
| 49 | 3 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∈ ℤ) |
| 50 | | dvdsval2 11972 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑥 ∥ 𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ)) |
| 51 | 46, 48, 49, 50 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑥 ∥ 𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ)) |
| 52 | 44, 51 | mpbid 147 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 / 𝑥) ∈ ℤ) |
| 53 | | zringbas 14228 |
. . . . . . . . . . 11
⊢ ℤ =
(Base‘ℤring) |
| 54 | | zringmulr 14231 |
. . . . . . . . . . 11
⊢ ·
= (.r‘ℤring) |
| 55 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(.r‘𝑌) = (.r‘𝑌) |
| 56 | 53, 54, 55 | rhmmul 13796 |
. . . . . . . . . 10
⊢
(((ℤRHom‘𝑌) ∈ (ℤring RingHom
𝑌) ∧ (𝑁 / 𝑥) ∈ ℤ ∧ 𝑥 ∈ ℤ) →
((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥))) |
| 57 | 43, 52, 46, 56 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥))) |
| 58 | | iddvds 11986 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| 59 | 49, 58 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∥ 𝑁) |
| 60 | | nnnn0 9273 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 61 | 60 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∈
ℕ0) |
| 62 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(0g‘𝑌) = (0g‘𝑌) |
| 63 | 18, 41, 62 | zndvds0 14282 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑁) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑁)) |
| 64 | 61, 49, 63 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘𝑁) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑁)) |
| 65 | 59, 64 | mpbird 167 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘𝑁) = (0g‘𝑌)) |
| 66 | 37, 57, 65 | 3eqtr3d 2237 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g‘𝑌)) |
| 67 | 53, 10 | rhmf 13795 |
. . . . . . . . . . 11
⊢
((ℤRHom‘𝑌) ∈ (ℤring RingHom
𝑌) →
(ℤRHom‘𝑌):ℤ⟶(Base‘𝑌)) |
| 68 | 43, 67 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌)) |
| 69 | 68, 52 | ffvelcdmd 5701 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌)) |
| 70 | 68, 46 | ffvelcdmd 5701 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌)) |
| 71 | 10, 55, 62 | domneq0 13904 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Domn ∧
((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌) ∧ ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g‘𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌)))) |
| 72 | 38, 69, 70, 71 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g‘𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌)))) |
| 73 | 66, 72 | mpbid 147 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌))) |
| 74 | 18, 41, 62 | zndvds0 14282 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 / 𝑥) ∈ ℤ) →
(((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥))) |
| 75 | 61, 52, 74 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥))) |
| 76 | | nnre 9014 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 77 | 76 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∈ ℝ) |
| 78 | | nnre 9014 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) |
| 79 | 78 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∈ ℝ) |
| 80 | | nngt0 9032 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
| 81 | 80 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 0 < 𝑁) |
| 82 | | nngt0 9032 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℕ → 0 <
𝑥) |
| 83 | 82 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 0 < 𝑥) |
| 84 | 77, 79, 81, 83 | divgt0d 8979 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 0 < (𝑁 / 𝑥)) |
| 85 | | elnnz 9353 |
. . . . . . . . . . . 12
⊢ ((𝑁 / 𝑥) ∈ ℕ ↔ ((𝑁 / 𝑥) ∈ ℤ ∧ 0 < (𝑁 / 𝑥))) |
| 86 | 52, 84, 85 | sylanbrc 417 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 / 𝑥) ∈ ℕ) |
| 87 | | dvdsle 12026 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 / 𝑥) ∈ ℕ) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥))) |
| 88 | 49, 86, 87 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥))) |
| 89 | | 1red 8058 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 1 ∈ ℝ) |
| 90 | | 0lt1 8170 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
| 91 | 90 | a1i 9 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 0 < 1) |
| 92 | | lediv2 8935 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 0 <
𝑥) ∧ (1 ∈ ℝ
∧ 0 < 1) ∧ (𝑁
∈ ℝ ∧ 0 < 𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥))) |
| 93 | 79, 83, 89, 91, 77, 81, 92 | syl222anc 1265 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥))) |
| 94 | | nnle1eq1 9031 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ → (𝑥 ≤ 1 ↔ 𝑥 = 1)) |
| 95 | 94 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑥 ≤ 1 ↔ 𝑥 = 1)) |
| 96 | 31 | div1d 8824 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 / 1) = 𝑁) |
| 97 | 96 | breq1d 4044 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((𝑁 / 1) ≤ (𝑁 / 𝑥) ↔ 𝑁 ≤ (𝑁 / 𝑥))) |
| 98 | 93, 95, 97 | 3bitr3rd 219 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 ≤ (𝑁 / 𝑥) ↔ 𝑥 = 1)) |
| 99 | 88, 98 | sylibd 149 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑥 = 1)) |
| 100 | 75, 99 | sylbid 150 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) → 𝑥 = 1)) |
| 101 | 18, 41, 62 | zndvds0 14282 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑥)) |
| 102 | 61, 46, 101 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑥)) |
| 103 | | nnnn0 9273 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
| 104 | 103 | ad2antrl 490 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∈ ℕ0) |
| 105 | | dvdseq 12030 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ (𝑥 ∥ 𝑁 ∧ 𝑁 ∥ 𝑥)) → 𝑥 = 𝑁) |
| 106 | 105 | expr 375 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑥 ∥ 𝑁) → (𝑁 ∥ 𝑥 → 𝑥 = 𝑁)) |
| 107 | 104, 61, 44, 106 | syl21anc 1248 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 ∥ 𝑥 → 𝑥 = 𝑁)) |
| 108 | 102, 107 | sylbid 150 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌) → 𝑥 = 𝑁)) |
| 109 | 100, 108 | orim12d 787 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌)) → (𝑥 = 1 ∨ 𝑥 = 𝑁))) |
| 110 | 73, 109 | mpd 13 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑥 = 1 ∨ 𝑥 = 𝑁)) |
| 111 | 110 | expr 375 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ 𝑥 ∈ ℕ) → (𝑥 ∥ 𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁))) |
| 112 | 111 | ralrimiva 2570 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
∀𝑥 ∈ ℕ
(𝑥 ∥ 𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁))) |
| 113 | | isprm2 12310 |
. . . 4
⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℕ (𝑥 ∥ 𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))) |
| 114 | 29, 112, 113 | sylanbrc 417 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈
ℙ) |
| 115 | 114 | ex 115 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑌 ∈ IDomn → 𝑁 ∈
ℙ)) |
| 116 | 18 | znidom 14289 |
. 2
⊢ (𝑁 ∈ ℙ → 𝑌 ∈ IDomn) |
| 117 | 115, 116 | impbid1 142 |
1
⊢ (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈
ℙ)) |