ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znidomb GIF version

Theorem znidomb 14630
Description: The ℤ/n structure is a domain precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znidomb (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))

Proof of Theorem znidomb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2z 9482 . . . . . 6 2 ∈ ℤ
21a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ∈ ℤ)
3 nnz 9473 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
43adantr 276 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℤ)
5 hash2 11042 . . . . . . 7 (♯‘2o) = 2
6 isidom 14248 . . . . . . . . . . . 12 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
76simprbi 275 . . . . . . . . . . 11 (𝑌 ∈ IDomn → 𝑌 ∈ Domn)
8 domnnzr 14242 . . . . . . . . . . 11 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
97, 8syl 14 . . . . . . . . . 10 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
10 eqid 2229 . . . . . . . . . . . 12 (Base‘𝑌) = (Base‘𝑌)
1110isnzr2 14156 . . . . . . . . . . 11 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o ≼ (Base‘𝑌)))
1211simprbi 275 . . . . . . . . . 10 (𝑌 ∈ NzRing → 2o ≼ (Base‘𝑌))
139, 12syl 14 . . . . . . . . 9 (𝑌 ∈ IDomn → 2o ≼ (Base‘𝑌))
1413adantl 277 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2o ≼ (Base‘𝑌))
15 2onn 6675 . . . . . . . . . 10 2o ∈ ω
16 nnfi 7042 . . . . . . . . . 10 (2o ∈ ω → 2o ∈ Fin)
1715, 16ax-mp 5 . . . . . . . . 9 2o ∈ Fin
18 zntos.y . . . . . . . . . . 11 𝑌 = (ℤ/nℤ‘𝑁)
1918, 10znfi 14627 . . . . . . . . . 10 (𝑁 ∈ ℕ → (Base‘𝑌) ∈ Fin)
2019adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (Base‘𝑌) ∈ Fin)
21 fihashdom 11033 . . . . . . . . 9 ((2o ∈ Fin ∧ (Base‘𝑌) ∈ Fin) → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2217, 20, 21sylancr 414 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2314, 22mpbird 167 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (♯‘2o) ≤ (♯‘(Base‘𝑌)))
245, 23eqbrtrrid 4119 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ (♯‘(Base‘𝑌)))
2518, 10znhash 14628 . . . . . . 7 (𝑁 ∈ ℕ → (♯‘(Base‘𝑌)) = 𝑁)
2625adantr 276 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (♯‘(Base‘𝑌)) = 𝑁)
2724, 26breqtrd 4109 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ 𝑁)
28 eluz2 9736 . . . . 5 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
292, 4, 27, 28syl3anbrc 1205 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ (ℤ‘2))
30 nncn 9126 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3130ad2antrr 488 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℂ)
32 nncn 9126 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
3332ad2antrl 490 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℂ)
34 nnap0 9147 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 # 0)
3534ad2antrl 490 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 # 0)
3631, 33, 35divcanap1d 8946 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 𝑥) · 𝑥) = 𝑁)
3736fveq2d 5633 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = ((ℤRHom‘𝑌)‘𝑁))
387ad2antlr 489 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Domn)
39 domnring 14243 . . . . . . . . . . . 12 (𝑌 ∈ Domn → 𝑌 ∈ Ring)
4038, 39syl 14 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Ring)
41 eqid 2229 . . . . . . . . . . . 12 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
4241zrhrhm 14595 . . . . . . . . . . 11 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
4340, 42syl 14 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
44 simprr 531 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥𝑁)
45 nnz 9473 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
4645ad2antrl 490 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℤ)
47 nnne0 9146 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
4847ad2antrl 490 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ≠ 0)
493ad2antrr 488 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℤ)
50 dvdsval2 12309 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
5146, 48, 49, 50syl3anc 1271 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
5244, 51mpbid 147 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℤ)
53 zringbas 14568 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
54 zringmulr 14571 . . . . . . . . . . 11 · = (.r‘ℤring)
55 eqid 2229 . . . . . . . . . . 11 (.r𝑌) = (.r𝑌)
5653, 54, 55rhmmul 14136 . . . . . . . . . 10 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ (𝑁 / 𝑥) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
5743, 52, 46, 56syl3anc 1271 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
58 iddvds 12323 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁𝑁)
5949, 58syl 14 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁𝑁)
60 nnnn0 9384 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6160ad2antrr 488 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℕ0)
62 eqid 2229 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
6318, 41, 62zndvds0 14622 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑁 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6461, 49, 63syl2anc 411 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6559, 64mpbird 167 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑁) = (0g𝑌))
6637, 57, 653eqtr3d 2270 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌))
6753, 10rhmf 14135 . . . . . . . . . . 11 ((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6843, 67syl 14 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6968, 52ffvelcdmd 5773 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌))
7068, 46ffvelcdmd 5773 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌))
7110, 55, 62domneq0 14244 . . . . . . . . 9 ((𝑌 ∈ Domn ∧ ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌) ∧ ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
7238, 69, 70, 71syl3anc 1271 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
7366, 72mpbid 147 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)))
7418, 41, 62zndvds0 14622 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 𝑥) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
7561, 52, 74syl2anc 411 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
76 nnre 9125 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7776ad2antrr 488 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℝ)
78 nnre 9125 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
7978ad2antrl 490 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℝ)
80 nngt0 9143 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 0 < 𝑁)
8180ad2antrr 488 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑁)
82 nngt0 9143 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 0 < 𝑥)
8382ad2antrl 490 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑥)
8477, 79, 81, 83divgt0d 9090 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < (𝑁 / 𝑥))
85 elnnz 9464 . . . . . . . . . . . 12 ((𝑁 / 𝑥) ∈ ℕ ↔ ((𝑁 / 𝑥) ∈ ℤ ∧ 0 < (𝑁 / 𝑥)))
8652, 84, 85sylanbrc 417 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℕ)
87 dvdsle 12363 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 / 𝑥) ∈ ℕ) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
8849, 86, 87syl2anc 411 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
89 1red 8169 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 1 ∈ ℝ)
90 0lt1 8281 . . . . . . . . . . . . 13 0 < 1
9190a1i 9 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 1)
92 lediv2 9046 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
9379, 83, 89, 91, 77, 81, 92syl222anc 1287 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
94 nnle1eq1 9142 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9594ad2antrl 490 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9631div1d 8935 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 1) = 𝑁)
9796breq1d 4093 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 1) ≤ (𝑁 / 𝑥) ↔ 𝑁 ≤ (𝑁 / 𝑥)))
9893, 95, 973bitr3rd 219 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ≤ (𝑁 / 𝑥) ↔ 𝑥 = 1))
9988, 98sylibd 149 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑥 = 1))
10075, 99sylbid 150 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) → 𝑥 = 1))
10118, 41, 62zndvds0 14622 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
10261, 46, 101syl2anc 411 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
103 nnnn0 9384 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
104103ad2antrl 490 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℕ0)
105 dvdseq 12367 . . . . . . . . . . 11 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑥𝑁𝑁𝑥)) → 𝑥 = 𝑁)
106105expr 375 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑥𝑁) → (𝑁𝑥𝑥 = 𝑁))
107104, 61, 44, 106syl21anc 1270 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁𝑥𝑥 = 𝑁))
108102, 107sylbid 150 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) → 𝑥 = 𝑁))
109100, 108orim12d 791 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)) → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
11073, 109mpd 13 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 = 1 ∨ 𝑥 = 𝑁))
111110expr 375 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ 𝑥 ∈ ℕ) → (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
112111ralrimiva 2603 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
113 isprm2 12647 . . . 4 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁))))
11429, 112, 113sylanbrc 417 . . 3 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℙ)
115114ex 115 . 2 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn → 𝑁 ∈ ℙ))
11618znidom 14629 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
117115, 116impbid1 142 1 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wne 2400  wral 2508   class class class wbr 4083  ωcom 4682  wf 5314  cfv 5318  (class class class)co 6007  2oc2o 6562  cdom 6894  Fincfn 6895  cc 8005  cr 8006  0cc0 8007  1c1 8008   · cmul 8012   < clt 8189  cle 8190   # cap 8736   / cdiv 8827  cn 9118  2c2 9169  0cn0 9377  cz 9454  cuz 9730  chash 11005  cdvds 12306  cprime 12637  Basecbs 13040  .rcmulr 13119  0gc0g 13297  Ringcrg 13967  CRingccrg 13968   RingHom crh 14122  NzRingcnzr 14151  Domncdomn 14228  IDomncidom 14229  ringczring 14562  ℤRHomczrh 14583  ℤ/nczn 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-tpos 6397  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-ec 6690  df-qs 6694  df-map 6805  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-prm 12638  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-starv 13133  df-sca 13134  df-vsca 13135  df-ip 13136  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-0g 13299  df-topgen 13301  df-iimas 13343  df-qus 13344  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-grp 13544  df-minusg 13545  df-sbg 13546  df-mulg 13665  df-subg 13715  df-nsg 13716  df-eqg 13717  df-ghm 13786  df-cmn 13831  df-abl 13832  df-mgp 13892  df-rng 13904  df-ur 13931  df-srg 13935  df-ring 13969  df-cring 13970  df-oppr 14039  df-dvdsr 14060  df-rhm 14124  df-nzr 14152  df-subrg 14191  df-domn 14231  df-idom 14232  df-lmod 14261  df-lssm 14325  df-lsp 14359  df-sra 14407  df-rgmod 14408  df-lidl 14441  df-rsp 14442  df-2idl 14472  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529  df-zring 14563  df-zrh 14586  df-zn 14588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator