| Step | Hyp | Ref
| Expression |
| 1 | | znchr.y |
. . . . 5
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
| 2 | 1 | zncrng 14201 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) |
| 3 | 2 | adantr 276 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
CRing) |
| 4 | | znunit.u |
. . . 4
⊢ 𝑈 = (Unit‘𝑌) |
| 5 | | eqid 2196 |
. . . 4
⊢
(1r‘𝑌) = (1r‘𝑌) |
| 6 | | eqid 2196 |
. . . 4
⊢
(∥r‘𝑌) = (∥r‘𝑌) |
| 7 | 4, 5, 6 | crngunit 13667 |
. . 3
⊢ (𝑌 ∈ CRing → ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌))) |
| 8 | 3, 7 | syl 14 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌))) |
| 9 | | eqidd 2197 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (Base‘𝑌) =
(Base‘𝑌)) |
| 10 | | eqidd 2197 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∥r‘𝑌) = (∥r‘𝑌)) |
| 11 | | crngring 13564 |
. . . 4
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
| 12 | | ringsrg 13603 |
. . . 4
⊢ (𝑌 ∈ Ring → 𝑌 ∈ SRing) |
| 13 | 3, 11, 12 | 3syl 17 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
SRing) |
| 14 | | eqidd 2197 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (.r‘𝑌) = (.r‘𝑌)) |
| 15 | | eqid 2196 |
. . . . . . 7
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 16 | | znunit.l |
. . . . . . 7
⊢ 𝐿 = (ℤRHom‘𝑌) |
| 17 | 1, 15, 16 | znzrhfo 14204 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝐿:ℤ–onto→(Base‘𝑌)) |
| 18 | 17 | adantr 276 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿:ℤ–onto→(Base‘𝑌)) |
| 19 | | fof 5480 |
. . . . 5
⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 20 | 18, 19 | syl 14 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿:ℤ⟶(Base‘𝑌)) |
| 21 | | ffvelcdm 5695 |
. . . 4
⊢ ((𝐿:ℤ⟶(Base‘𝑌) ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) ∈ (Base‘𝑌)) |
| 22 | 20, 21 | sylancom 420 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (𝐿‘𝐴) ∈ (Base‘𝑌)) |
| 23 | 9, 10, 13, 14, 22 | dvdsr2d 13651 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
| 24 | | forn 5483 |
. . . . . 6
⊢ (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌)) |
| 25 | 18, 24 | syl 14 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ran 𝐿 =
(Base‘𝑌)) |
| 26 | 25 | rexeqdv 2700 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈ ran
𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
| 27 | | ffn 5407 |
. . . . 5
⊢ (𝐿:ℤ⟶(Base‘𝑌) → 𝐿 Fn ℤ) |
| 28 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑥 = (𝐿‘𝑛) → (𝑥(.r‘𝑌)(𝐿‘𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) |
| 29 | 28 | eqeq1d 2205 |
. . . . . 6
⊢ (𝑥 = (𝐿‘𝑛) → ((𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
| 30 | 29 | rexrn 5699 |
. . . . 5
⊢ (𝐿 Fn ℤ → (∃𝑥 ∈ ran 𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
| 31 | 20, 27, 30 | 3syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈ ran
𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
| 32 | 26, 31 | bitr3d 190 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈
(Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
| 33 | 16 | zrhrhm 14179 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑌)) |
| 34 | 3, 11, 33 | 3syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿 ∈
(ℤring RingHom 𝑌)) |
| 35 | 34 | adantr 276 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝐿 ∈
(ℤring RingHom 𝑌)) |
| 36 | | simpr 110 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑛 ∈
ℤ) |
| 37 | | simplr 528 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
| 38 | | zringbas 14152 |
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) |
| 39 | | zringmulr 14155 |
. . . . . . . 8
⊢ ·
= (.r‘ℤring) |
| 40 | | eqid 2196 |
. . . . . . . 8
⊢
(.r‘𝑌) = (.r‘𝑌) |
| 41 | 38, 39, 40 | rhmmul 13720 |
. . . . . . 7
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) |
| 42 | 35, 36, 37, 41 | syl3anc 1249 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝐿‘(𝑛 · 𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) |
| 43 | 3, 11 | syl 14 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
Ring) |
| 44 | 43 | adantr 276 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑌 ∈
Ring) |
| 45 | 16, 5 | zrh1 14180 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → (𝐿‘1) =
(1r‘𝑌)) |
| 46 | 44, 45 | syl 14 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝐿‘1) =
(1r‘𝑌)) |
| 47 | 42, 46 | eqeq12d 2211 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
| 48 | | simpll 527 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑁 ∈
ℕ0) |
| 49 | 36, 37 | zmulcld 9454 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝑛 · 𝐴) ∈
ℤ) |
| 50 | | 1zzd 9353 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 1 ∈ ℤ) |
| 51 | 1, 16 | zndvds 14205 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈
ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
| 52 | 48, 49, 50, 51 | syl3anc 1249 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
| 53 | 47, 52 | bitr3d 190 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
| 54 | 53 | rexbidva 2494 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
| 55 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝐴 ∈ ℤ) |
| 56 | | nn0z 9346 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 57 | 56 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∈ ℤ) |
| 58 | | gcddvds 12130 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁)) |
| 59 | 55, 57, 58 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁)) |
| 60 | 59 | simpld 112 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝐴) |
| 61 | 55, 57 | gcdcld 12135 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈
ℕ0) |
| 62 | 61 | nn0zd 9446 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℤ) |
| 63 | 36 | adantrr 479 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑛 ∈ ℤ) |
| 64 | | dvdsmultr2 11998 |
. . . . . . . . 9
⊢ (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))) |
| 65 | 62, 63, 55, 64 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))) |
| 66 | 60, 65 | mpd 13 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)) |
| 67 | 49 | adantrr 479 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝑛 · 𝐴) ∈ ℤ) |
| 68 | | 1zzd 9353 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 1 ∈
ℤ) |
| 69 | | peano2zm 9364 |
. . . . . . . . . 10
⊢ ((𝑛 · 𝐴) ∈ ℤ → ((𝑛 · 𝐴) − 1) ∈
ℤ) |
| 70 | 67, 69 | syl 14 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝑛 · 𝐴) − 1) ∈
ℤ) |
| 71 | 59 | simprd 114 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝑁) |
| 72 | | simprr 531 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)) |
| 73 | 62, 57, 70, 71, 72 | dvdstrd 11995 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) |
| 74 | | dvdssub2 12000 |
. . . . . . . 8
⊢ ((((𝐴 gcd 𝑁) ∈ ℤ ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ)
∧ (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1)) |
| 75 | 62, 67, 68, 73, 74 | syl31anc 1252 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1)) |
| 76 | 66, 75 | mpbid 147 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 1) |
| 77 | | dvds1 12018 |
. . . . . . 7
⊢ ((𝐴 gcd 𝑁) ∈ ℕ0 → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1)) |
| 78 | 61, 77 | syl 14 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1)) |
| 79 | 76, 78 | mpbid 147 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) = 1) |
| 80 | 79 | rexlimdvaa 2615 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) → (𝐴 gcd 𝑁) = 1)) |
| 81 | | simpr 110 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
| 82 | 56 | adantr 276 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑁 ∈
ℤ) |
| 83 | | bezout 12178 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
∃𝑛 ∈ ℤ
∃𝑚 ∈ ℤ
(𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚))) |
| 84 | 81, 82, 83 | syl2anc 411 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ∃𝑛 ∈
ℤ ∃𝑚 ∈
ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚))) |
| 85 | | eqeq1 2203 |
. . . . . . 7
⊢ ((𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
| 86 | 85 | 2rexbidv 2522 |
. . . . . 6
⊢ ((𝐴 gcd 𝑁) = 1 → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
| 87 | 84, 86 | syl5ibcom 155 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
| 88 | 56 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∈
ℤ) |
| 89 | | dvdsmul1 11978 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚)) |
| 90 | 88, 89 | sylancom 420 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ (𝑁 · 𝑚)) |
| 91 | | zmulcl 9379 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ) |
| 92 | 88, 91 | sylancom 420 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 · 𝑚) ∈
ℤ) |
| 93 | | dvdsnegb 11973 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚))) |
| 94 | 88, 92, 93 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚))) |
| 95 | 90, 94 | mpbid 147 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ -(𝑁 · 𝑚)) |
| 96 | 37 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
| 97 | 96 | zcnd 9449 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝐴 ∈
ℂ) |
| 98 | | zcn 9331 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
| 99 | 98 | ad2antlr 489 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑛 ∈
ℂ) |
| 100 | 97, 99 | mulcomd 8048 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝐴 · 𝑛) = (𝑛 · 𝐴)) |
| 101 | 100 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚))) |
| 102 | 99, 97 | mulcld 8047 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑛 · 𝐴) ∈
ℂ) |
| 103 | 92 | zcnd 9449 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 · 𝑚) ∈
ℂ) |
| 104 | 102, 103 | subnegd 8344 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − -(𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚))) |
| 105 | 101, 104 | eqtr4d 2232 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) |
| 106 | 105 | oveq2d 5938 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚)))) |
| 107 | 103 | negcld 8324 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ -(𝑁 · 𝑚) ∈
ℂ) |
| 108 | 102, 107 | nncand 8342 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) = -(𝑁 · 𝑚)) |
| 109 | 106, 108 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = -(𝑁 · 𝑚)) |
| 110 | 95, 109 | breqtrrd 4061 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
| 111 | | oveq2 5930 |
. . . . . . . . 9
⊢ (1 =
((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ((𝑛 · 𝐴) − 1) = ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
| 112 | 111 | breq2d 4045 |
. . . . . . . 8
⊢ (1 =
((𝐴 · 𝑛) + (𝑁 · 𝑚)) → (𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))) |
| 113 | 110, 112 | syl5ibrcom 157 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
| 114 | 113 | rexlimdva 2614 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (∃𝑚 ∈
ℤ 1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
| 115 | 114 | reximdva 2599 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ ∃𝑚 ∈
ℤ 1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
| 116 | 87, 115 | syld 45 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
| 117 | 80, 116 | impbid 129 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ (𝐴 gcd 𝑁) = 1)) |
| 118 | 32, 54, 117 | 3bitrd 214 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈
(Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ (𝐴 gcd 𝑁) = 1)) |
| 119 | 8, 23, 118 | 3bitrd 214 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1)) |