| Step | Hyp | Ref
 | Expression | 
| 1 |   | znchr.y | 
. . . . 5
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) | 
| 2 | 1 | zncrng 14201 | 
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) | 
| 3 | 2 | adantr 276 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
CRing) | 
| 4 |   | znunit.u | 
. . . 4
⊢ 𝑈 = (Unit‘𝑌) | 
| 5 |   | eqid 2196 | 
. . . 4
⊢
(1r‘𝑌) = (1r‘𝑌) | 
| 6 |   | eqid 2196 | 
. . . 4
⊢
(∥r‘𝑌) = (∥r‘𝑌) | 
| 7 | 4, 5, 6 | crngunit 13667 | 
. . 3
⊢ (𝑌 ∈ CRing → ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌))) | 
| 8 | 3, 7 | syl 14 | 
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌))) | 
| 9 |   | eqidd 2197 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (Base‘𝑌) =
(Base‘𝑌)) | 
| 10 |   | eqidd 2197 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∥r‘𝑌) = (∥r‘𝑌)) | 
| 11 |   | crngring 13564 | 
. . . 4
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | 
| 12 |   | ringsrg 13603 | 
. . . 4
⊢ (𝑌 ∈ Ring → 𝑌 ∈ SRing) | 
| 13 | 3, 11, 12 | 3syl 17 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
SRing) | 
| 14 |   | eqidd 2197 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (.r‘𝑌) = (.r‘𝑌)) | 
| 15 |   | eqid 2196 | 
. . . . . . 7
⊢
(Base‘𝑌) =
(Base‘𝑌) | 
| 16 |   | znunit.l | 
. . . . . . 7
⊢ 𝐿 = (ℤRHom‘𝑌) | 
| 17 | 1, 15, 16 | znzrhfo 14204 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝐿:ℤ–onto→(Base‘𝑌)) | 
| 18 | 17 | adantr 276 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿:ℤ–onto→(Base‘𝑌)) | 
| 19 |   | fof 5480 | 
. . . . 5
⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) | 
| 20 | 18, 19 | syl 14 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿:ℤ⟶(Base‘𝑌)) | 
| 21 |   | ffvelcdm 5695 | 
. . . 4
⊢ ((𝐿:ℤ⟶(Base‘𝑌) ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) ∈ (Base‘𝑌)) | 
| 22 | 20, 21 | sylancom 420 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (𝐿‘𝐴) ∈ (Base‘𝑌)) | 
| 23 | 9, 10, 13, 14, 22 | dvdsr2d 13651 | 
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) | 
| 24 |   | forn 5483 | 
. . . . . 6
⊢ (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌)) | 
| 25 | 18, 24 | syl 14 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ran 𝐿 =
(Base‘𝑌)) | 
| 26 | 25 | rexeqdv 2700 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈ ran
𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) | 
| 27 |   | ffn 5407 | 
. . . . 5
⊢ (𝐿:ℤ⟶(Base‘𝑌) → 𝐿 Fn ℤ) | 
| 28 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = (𝐿‘𝑛) → (𝑥(.r‘𝑌)(𝐿‘𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) | 
| 29 | 28 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑥 = (𝐿‘𝑛) → ((𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) | 
| 30 | 29 | rexrn 5699 | 
. . . . 5
⊢ (𝐿 Fn ℤ → (∃𝑥 ∈ ran 𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) | 
| 31 | 20, 27, 30 | 3syl 17 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈ ran
𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) | 
| 32 | 26, 31 | bitr3d 190 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈
(Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) | 
| 33 | 16 | zrhrhm 14179 | 
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑌)) | 
| 34 | 3, 11, 33 | 3syl 17 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿 ∈
(ℤring RingHom 𝑌)) | 
| 35 | 34 | adantr 276 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝐿 ∈
(ℤring RingHom 𝑌)) | 
| 36 |   | simpr 110 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑛 ∈
ℤ) | 
| 37 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝐴 ∈
ℤ) | 
| 38 |   | zringbas 14152 | 
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) | 
| 39 |   | zringmulr 14155 | 
. . . . . . . 8
⊢  ·
= (.r‘ℤring) | 
| 40 |   | eqid 2196 | 
. . . . . . . 8
⊢
(.r‘𝑌) = (.r‘𝑌) | 
| 41 | 38, 39, 40 | rhmmul 13720 | 
. . . . . . 7
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) | 
| 42 | 35, 36, 37, 41 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝐿‘(𝑛 · 𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) | 
| 43 | 3, 11 | syl 14 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
Ring) | 
| 44 | 43 | adantr 276 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑌 ∈
Ring) | 
| 45 | 16, 5 | zrh1 14180 | 
. . . . . . 7
⊢ (𝑌 ∈ Ring → (𝐿‘1) =
(1r‘𝑌)) | 
| 46 | 44, 45 | syl 14 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝐿‘1) =
(1r‘𝑌)) | 
| 47 | 42, 46 | eqeq12d 2211 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) | 
| 48 |   | simpll 527 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑁 ∈
ℕ0) | 
| 49 | 36, 37 | zmulcld 9454 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝑛 · 𝐴) ∈
ℤ) | 
| 50 |   | 1zzd 9353 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 1 ∈ ℤ) | 
| 51 | 1, 16 | zndvds 14205 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈
ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) | 
| 52 | 48, 49, 50, 51 | syl3anc 1249 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) | 
| 53 | 47, 52 | bitr3d 190 | 
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) | 
| 54 | 53 | rexbidva 2494 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) | 
| 55 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝐴 ∈ ℤ) | 
| 56 |   | nn0z 9346 | 
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) | 
| 57 | 56 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∈ ℤ) | 
| 58 |   | gcddvds 12130 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁)) | 
| 59 | 55, 57, 58 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁)) | 
| 60 | 59 | simpld 112 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝐴) | 
| 61 | 55, 57 | gcdcld 12135 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈
ℕ0) | 
| 62 | 61 | nn0zd 9446 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℤ) | 
| 63 | 36 | adantrr 479 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑛 ∈ ℤ) | 
| 64 |   | dvdsmultr2 11998 | 
. . . . . . . . 9
⊢ (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))) | 
| 65 | 62, 63, 55, 64 | syl3anc 1249 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))) | 
| 66 | 60, 65 | mpd 13 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)) | 
| 67 | 49 | adantrr 479 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝑛 · 𝐴) ∈ ℤ) | 
| 68 |   | 1zzd 9353 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 1 ∈
ℤ) | 
| 69 |   | peano2zm 9364 | 
. . . . . . . . . 10
⊢ ((𝑛 · 𝐴) ∈ ℤ → ((𝑛 · 𝐴) − 1) ∈
ℤ) | 
| 70 | 67, 69 | syl 14 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝑛 · 𝐴) − 1) ∈
ℤ) | 
| 71 | 59 | simprd 114 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝑁) | 
| 72 |   | simprr 531 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)) | 
| 73 | 62, 57, 70, 71, 72 | dvdstrd 11995 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) | 
| 74 |   | dvdssub2 12000 | 
. . . . . . . 8
⊢ ((((𝐴 gcd 𝑁) ∈ ℤ ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ)
∧ (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1)) | 
| 75 | 62, 67, 68, 73, 74 | syl31anc 1252 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1)) | 
| 76 | 66, 75 | mpbid 147 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 1) | 
| 77 |   | dvds1 12018 | 
. . . . . . 7
⊢ ((𝐴 gcd 𝑁) ∈ ℕ0 → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1)) | 
| 78 | 61, 77 | syl 14 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1)) | 
| 79 | 76, 78 | mpbid 147 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) = 1) | 
| 80 | 79 | rexlimdvaa 2615 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) → (𝐴 gcd 𝑁) = 1)) | 
| 81 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐴 ∈
ℤ) | 
| 82 | 56 | adantr 276 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑁 ∈
ℤ) | 
| 83 |   | bezout 12178 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
∃𝑛 ∈ ℤ
∃𝑚 ∈ ℤ
(𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚))) | 
| 84 | 81, 82, 83 | syl2anc 411 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ∃𝑛 ∈
ℤ ∃𝑚 ∈
ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚))) | 
| 85 |   | eqeq1 2203 | 
. . . . . . 7
⊢ ((𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) | 
| 86 | 85 | 2rexbidv 2522 | 
. . . . . 6
⊢ ((𝐴 gcd 𝑁) = 1 → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) | 
| 87 | 84, 86 | syl5ibcom 155 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) | 
| 88 | 56 | ad3antrrr 492 | 
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∈
ℤ) | 
| 89 |   | dvdsmul1 11978 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚)) | 
| 90 | 88, 89 | sylancom 420 | 
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ (𝑁 · 𝑚)) | 
| 91 |   | zmulcl 9379 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ) | 
| 92 | 88, 91 | sylancom 420 | 
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 · 𝑚) ∈
ℤ) | 
| 93 |   | dvdsnegb 11973 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚))) | 
| 94 | 88, 92, 93 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚))) | 
| 95 | 90, 94 | mpbid 147 | 
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ -(𝑁 · 𝑚)) | 
| 96 | 37 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝐴 ∈
ℤ) | 
| 97 | 96 | zcnd 9449 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝐴 ∈
ℂ) | 
| 98 |   | zcn 9331 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) | 
| 99 | 98 | ad2antlr 489 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑛 ∈
ℂ) | 
| 100 | 97, 99 | mulcomd 8048 | 
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝐴 · 𝑛) = (𝑛 · 𝐴)) | 
| 101 | 100 | oveq1d 5937 | 
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚))) | 
| 102 | 99, 97 | mulcld 8047 | 
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑛 · 𝐴) ∈
ℂ) | 
| 103 | 92 | zcnd 9449 | 
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 · 𝑚) ∈
ℂ) | 
| 104 | 102, 103 | subnegd 8344 | 
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − -(𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚))) | 
| 105 | 101, 104 | eqtr4d 2232 | 
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) | 
| 106 | 105 | oveq2d 5938 | 
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚)))) | 
| 107 | 103 | negcld 8324 | 
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ -(𝑁 · 𝑚) ∈
ℂ) | 
| 108 | 102, 107 | nncand 8342 | 
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) = -(𝑁 · 𝑚)) | 
| 109 | 106, 108 | eqtrd 2229 | 
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = -(𝑁 · 𝑚)) | 
| 110 | 95, 109 | breqtrrd 4061 | 
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) | 
| 111 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (1 =
((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ((𝑛 · 𝐴) − 1) = ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) | 
| 112 | 111 | breq2d 4045 | 
. . . . . . . 8
⊢ (1 =
((𝐴 · 𝑛) + (𝑁 · 𝑚)) → (𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))) | 
| 113 | 110, 112 | syl5ibrcom 157 | 
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))) | 
| 114 | 113 | rexlimdva 2614 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (∃𝑚 ∈
ℤ 1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))) | 
| 115 | 114 | reximdva 2599 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ ∃𝑚 ∈
ℤ 1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) | 
| 116 | 87, 115 | syld 45 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) | 
| 117 | 80, 116 | impbid 129 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ (𝐴 gcd 𝑁) = 1)) | 
| 118 | 32, 54, 117 | 3bitrd 214 | 
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈
(Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ (𝐴 gcd 𝑁) = 1)) | 
| 119 | 8, 23, 118 | 3bitrd 214 | 
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1)) |