ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znunit GIF version

Theorem znunit 14147
Description: The units of ℤ/n are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znunit.l 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znunit ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))

Proof of Theorem znunit
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 14133 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
32adantr 276 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ CRing)
4 znunit.u . . . 4 𝑈 = (Unit‘𝑌)
5 eqid 2193 . . . 4 (1r𝑌) = (1r𝑌)
6 eqid 2193 . . . 4 (∥r𝑌) = (∥r𝑌)
74, 5, 6crngunit 13607 . . 3 (𝑌 ∈ CRing → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
83, 7syl 14 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
9 eqidd 2194 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (Base‘𝑌) = (Base‘𝑌))
10 eqidd 2194 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∥r𝑌) = (∥r𝑌))
11 crngring 13504 . . . 4 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
12 ringsrg 13543 . . . 4 (𝑌 ∈ Ring → 𝑌 ∈ SRing)
133, 11, 123syl 17 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ SRing)
14 eqidd 2194 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (.r𝑌) = (.r𝑌))
15 eqid 2193 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
16 znunit.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
171, 15, 16znzrhfo 14136 . . . . . 6 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
1817adantr 276 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ–onto→(Base‘𝑌))
19 fof 5476 . . . . 5 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2018, 19syl 14 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ⟶(Base‘𝑌))
21 ffvelcdm 5691 . . . 4 ((𝐿:ℤ⟶(Base‘𝑌) ∧ 𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
2220, 21sylancom 420 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
239, 10, 13, 14, 22dvdsr2d 13591 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴)(∥r𝑌)(1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
24 forn 5479 . . . . . 6 (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌))
2518, 24syl 14 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ran 𝐿 = (Base‘𝑌))
2625rexeqdv 2697 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
27 ffn 5403 . . . . 5 (𝐿:ℤ⟶(Base‘𝑌) → 𝐿 Fn ℤ)
28 oveq1 5925 . . . . . . 7 (𝑥 = (𝐿𝑛) → (𝑥(.r𝑌)(𝐿𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
2928eqeq1d 2202 . . . . . 6 (𝑥 = (𝐿𝑛) → ((𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
3029rexrn 5695 . . . . 5 (𝐿 Fn ℤ → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
3120, 27, 303syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
3226, 31bitr3d 190 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
3316zrhrhm 14111 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
343, 11, 333syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
3534adantr 276 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
36 simpr 110 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
37 simplr 528 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ ℤ)
38 zringbas 14084 . . . . . . . 8 ℤ = (Base‘ℤring)
39 zringmulr 14087 . . . . . . . 8 · = (.r‘ℤring)
40 eqid 2193 . . . . . . . 8 (.r𝑌) = (.r𝑌)
4138, 39, 40rhmmul 13660 . . . . . . 7 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
4235, 36, 37, 41syl3anc 1249 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
433, 11syl 14 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ Ring)
4443adantr 276 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ Ring)
4516, 5zrh1 14112 . . . . . . 7 (𝑌 ∈ Ring → (𝐿‘1) = (1r𝑌))
4644, 45syl 14 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘1) = (1r𝑌))
4742, 46eqeq12d 2208 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
48 simpll 527 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℕ0)
4936, 37zmulcld 9445 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℤ)
50 1zzd 9344 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
511, 16zndvds 14137 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
5248, 49, 50, 51syl3anc 1249 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
5347, 52bitr3d 190 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
5453rexbidva 2491 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
55 simplr 528 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝐴 ∈ ℤ)
56 nn0z 9337 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5756ad2antrr 488 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∈ ℤ)
58 gcddvds 12100 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
5955, 57, 58syl2anc 411 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
6059simpld 112 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝐴)
6155, 57gcdcld 12105 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℕ0)
6261nn0zd 9437 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℤ)
6336adantrr 479 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑛 ∈ ℤ)
64 dvdsmultr2 11976 . . . . . . . . 9 (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6562, 63, 55, 64syl3anc 1249 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6660, 65mpd 13 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))
6749adantrr 479 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝑛 · 𝐴) ∈ ℤ)
68 1zzd 9344 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 1 ∈ ℤ)
69 peano2zm 9355 . . . . . . . . . 10 ((𝑛 · 𝐴) ∈ ℤ → ((𝑛 · 𝐴) − 1) ∈ ℤ)
7067, 69syl 14 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝑛 · 𝐴) − 1) ∈ ℤ)
7159simprd 114 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝑁)
72 simprr 531 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))
7362, 57, 70, 71, 72dvdstrd 11973 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1))
74 dvdssub2 11978 . . . . . . . 8 ((((𝐴 gcd 𝑁) ∈ ℤ ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) ∧ (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7562, 67, 68, 73, 74syl31anc 1252 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7666, 75mpbid 147 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 1)
77 dvds1 11995 . . . . . . 7 ((𝐴 gcd 𝑁) ∈ ℕ0 → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7861, 77syl 14 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7976, 78mpbid 147 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) = 1)
8079rexlimdvaa 2612 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) → (𝐴 gcd 𝑁) = 1))
81 simpr 110 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
8256adantr 276 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑁 ∈ ℤ)
83 bezout 12148 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
8481, 82, 83syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
85 eqeq1 2200 . . . . . . 7 ((𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
86852rexbidv 2519 . . . . . 6 ((𝐴 gcd 𝑁) = 1 → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8784, 86syl5ibcom 155 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8856ad3antrrr 492 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℤ)
89 dvdsmul1 11956 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
9088, 89sylancom 420 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
91 zmulcl 9370 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
9288, 91sylancom 420 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
93 dvdsnegb 11951 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9488, 92, 93syl2anc 411 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9590, 94mpbid 147 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ -(𝑁 · 𝑚))
9637adantr 276 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℤ)
9796zcnd 9440 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℂ)
98 zcn 9322 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
9998ad2antlr 489 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑛 ∈ ℂ)
10097, 99mulcomd 8041 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝐴 · 𝑛) = (𝑛 · 𝐴))
101100oveq1d 5933 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
10299, 97mulcld 8040 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℂ)
10392zcnd 9440 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℂ)
104102, 103subnegd 8337 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − -(𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
105101, 104eqtr4d 2229 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) − -(𝑁 · 𝑚)))
106105oveq2d 5934 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))))
107103negcld 8317 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → -(𝑁 · 𝑚) ∈ ℂ)
108102, 107nncand 8335 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) = -(𝑁 · 𝑚))
109106, 108eqtrd 2226 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = -(𝑁 · 𝑚))
11095, 109breqtrrd 4057 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
111 oveq2 5926 . . . . . . . . 9 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ((𝑛 · 𝐴) − 1) = ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
112111breq2d 4041 . . . . . . . 8 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → (𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))))
113110, 112syl5ibrcom 157 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
114113rexlimdva 2611 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
115114reximdva 2596 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11687, 115syld 45 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11780, 116impbid 129 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ (𝐴 gcd 𝑁) = 1))
11832, 54, 1173bitrd 214 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ (𝐴 gcd 𝑁) = 1))
1198, 23, 1183bitrd 214 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4029  ran crn 4660   Fn wfn 5249  wf 5250  ontowfo 5252  cfv 5254  (class class class)co 5918  cc 7870  1c1 7873   + caddc 7875   · cmul 7877  cmin 8190  -cneg 8191  0cn0 9240  cz 9317  cdvds 11930   gcd cgcd 12079  Basecbs 12618  .rcmulr 12696  1rcur 13455  SRingcsrg 13459  Ringcrg 13492  CRingccrg 13493  rcdsr 13582  Unitcui 13583   RingHom crh 13646  ringczring 14078  ℤRHomczrh 14099  ℤ/nczn 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-recs 6358  df-frec 6444  df-er 6587  df-ec 6589  df-qs 6593  df-map 6704  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-ip 12713  df-ple 12715  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mulg 13190  df-subg 13240  df-nsg 13241  df-eqg 13242  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-rhm 13648  df-subrg 13715  df-lmod 13785  df-lssm 13849  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-rsp 13966  df-2idl 13996  df-icnfld 14048  df-zring 14079  df-zrh 14102  df-zn 14104
This theorem is referenced by:  znrrg  14148  lgseisenlem3  15188
  Copyright terms: Public domain W3C validator