Step | Hyp | Ref
| Expression |
1 | | znchr.y |
. . . . 5
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
2 | 1 | zncrng 14133 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) |
3 | 2 | adantr 276 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
CRing) |
4 | | znunit.u |
. . . 4
⊢ 𝑈 = (Unit‘𝑌) |
5 | | eqid 2193 |
. . . 4
⊢
(1r‘𝑌) = (1r‘𝑌) |
6 | | eqid 2193 |
. . . 4
⊢
(∥r‘𝑌) = (∥r‘𝑌) |
7 | 4, 5, 6 | crngunit 13607 |
. . 3
⊢ (𝑌 ∈ CRing → ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌))) |
8 | 3, 7 | syl 14 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌))) |
9 | | eqidd 2194 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (Base‘𝑌) =
(Base‘𝑌)) |
10 | | eqidd 2194 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∥r‘𝑌) = (∥r‘𝑌)) |
11 | | crngring 13504 |
. . . 4
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
12 | | ringsrg 13543 |
. . . 4
⊢ (𝑌 ∈ Ring → 𝑌 ∈ SRing) |
13 | 3, 11, 12 | 3syl 17 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
SRing) |
14 | | eqidd 2194 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (.r‘𝑌) = (.r‘𝑌)) |
15 | | eqid 2193 |
. . . . . . 7
⊢
(Base‘𝑌) =
(Base‘𝑌) |
16 | | znunit.l |
. . . . . . 7
⊢ 𝐿 = (ℤRHom‘𝑌) |
17 | 1, 15, 16 | znzrhfo 14136 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝐿:ℤ–onto→(Base‘𝑌)) |
18 | 17 | adantr 276 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿:ℤ–onto→(Base‘𝑌)) |
19 | | fof 5476 |
. . . . 5
⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
20 | 18, 19 | syl 14 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿:ℤ⟶(Base‘𝑌)) |
21 | | ffvelcdm 5691 |
. . . 4
⊢ ((𝐿:ℤ⟶(Base‘𝑌) ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) ∈ (Base‘𝑌)) |
22 | 20, 21 | sylancom 420 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (𝐿‘𝐴) ∈ (Base‘𝑌)) |
23 | 9, 10, 13, 14, 22 | dvdsr2d 13591 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
24 | | forn 5479 |
. . . . . 6
⊢ (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌)) |
25 | 18, 24 | syl 14 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ran 𝐿 =
(Base‘𝑌)) |
26 | 25 | rexeqdv 2697 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈ ran
𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
27 | | ffn 5403 |
. . . . 5
⊢ (𝐿:ℤ⟶(Base‘𝑌) → 𝐿 Fn ℤ) |
28 | | oveq1 5925 |
. . . . . . 7
⊢ (𝑥 = (𝐿‘𝑛) → (𝑥(.r‘𝑌)(𝐿‘𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) |
29 | 28 | eqeq1d 2202 |
. . . . . 6
⊢ (𝑥 = (𝐿‘𝑛) → ((𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
30 | 29 | rexrn 5695 |
. . . . 5
⊢ (𝐿 Fn ℤ → (∃𝑥 ∈ ran 𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
31 | 20, 27, 30 | 3syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈ ran
𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
32 | 26, 31 | bitr3d 190 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈
(Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
33 | 16 | zrhrhm 14111 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑌)) |
34 | 3, 11, 33 | 3syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿 ∈
(ℤring RingHom 𝑌)) |
35 | 34 | adantr 276 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝐿 ∈
(ℤring RingHom 𝑌)) |
36 | | simpr 110 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑛 ∈
ℤ) |
37 | | simplr 528 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
38 | | zringbas 14084 |
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) |
39 | | zringmulr 14087 |
. . . . . . . 8
⊢ ·
= (.r‘ℤring) |
40 | | eqid 2193 |
. . . . . . . 8
⊢
(.r‘𝑌) = (.r‘𝑌) |
41 | 38, 39, 40 | rhmmul 13660 |
. . . . . . 7
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) |
42 | 35, 36, 37, 41 | syl3anc 1249 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝐿‘(𝑛 · 𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) |
43 | 3, 11 | syl 14 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
Ring) |
44 | 43 | adantr 276 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑌 ∈
Ring) |
45 | 16, 5 | zrh1 14112 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → (𝐿‘1) =
(1r‘𝑌)) |
46 | 44, 45 | syl 14 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝐿‘1) =
(1r‘𝑌)) |
47 | 42, 46 | eqeq12d 2208 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
48 | | simpll 527 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑁 ∈
ℕ0) |
49 | 36, 37 | zmulcld 9445 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝑛 · 𝐴) ∈
ℤ) |
50 | | 1zzd 9344 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 1 ∈ ℤ) |
51 | 1, 16 | zndvds 14137 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈
ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
52 | 48, 49, 50, 51 | syl3anc 1249 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
53 | 47, 52 | bitr3d 190 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
54 | 53 | rexbidva 2491 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
55 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝐴 ∈ ℤ) |
56 | | nn0z 9337 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
57 | 56 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∈ ℤ) |
58 | | gcddvds 12100 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁)) |
59 | 55, 57, 58 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁)) |
60 | 59 | simpld 112 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝐴) |
61 | 55, 57 | gcdcld 12105 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈
ℕ0) |
62 | 61 | nn0zd 9437 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℤ) |
63 | 36 | adantrr 479 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑛 ∈ ℤ) |
64 | | dvdsmultr2 11976 |
. . . . . . . . 9
⊢ (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))) |
65 | 62, 63, 55, 64 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))) |
66 | 60, 65 | mpd 13 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)) |
67 | 49 | adantrr 479 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝑛 · 𝐴) ∈ ℤ) |
68 | | 1zzd 9344 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 1 ∈
ℤ) |
69 | | peano2zm 9355 |
. . . . . . . . . 10
⊢ ((𝑛 · 𝐴) ∈ ℤ → ((𝑛 · 𝐴) − 1) ∈
ℤ) |
70 | 67, 69 | syl 14 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝑛 · 𝐴) − 1) ∈
ℤ) |
71 | 59 | simprd 114 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝑁) |
72 | | simprr 531 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)) |
73 | 62, 57, 70, 71, 72 | dvdstrd 11973 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) |
74 | | dvdssub2 11978 |
. . . . . . . 8
⊢ ((((𝐴 gcd 𝑁) ∈ ℤ ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ)
∧ (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1)) |
75 | 62, 67, 68, 73, 74 | syl31anc 1252 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1)) |
76 | 66, 75 | mpbid 147 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 1) |
77 | | dvds1 11995 |
. . . . . . 7
⊢ ((𝐴 gcd 𝑁) ∈ ℕ0 → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1)) |
78 | 61, 77 | syl 14 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1)) |
79 | 76, 78 | mpbid 147 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) = 1) |
80 | 79 | rexlimdvaa 2612 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) → (𝐴 gcd 𝑁) = 1)) |
81 | | simpr 110 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
82 | 56 | adantr 276 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑁 ∈
ℤ) |
83 | | bezout 12148 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
∃𝑛 ∈ ℤ
∃𝑚 ∈ ℤ
(𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚))) |
84 | 81, 82, 83 | syl2anc 411 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ∃𝑛 ∈
ℤ ∃𝑚 ∈
ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚))) |
85 | | eqeq1 2200 |
. . . . . . 7
⊢ ((𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
86 | 85 | 2rexbidv 2519 |
. . . . . 6
⊢ ((𝐴 gcd 𝑁) = 1 → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
87 | 84, 86 | syl5ibcom 155 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
88 | 56 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∈
ℤ) |
89 | | dvdsmul1 11956 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚)) |
90 | 88, 89 | sylancom 420 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ (𝑁 · 𝑚)) |
91 | | zmulcl 9370 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ) |
92 | 88, 91 | sylancom 420 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 · 𝑚) ∈
ℤ) |
93 | | dvdsnegb 11951 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚))) |
94 | 88, 92, 93 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚))) |
95 | 90, 94 | mpbid 147 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ -(𝑁 · 𝑚)) |
96 | 37 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
97 | 96 | zcnd 9440 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝐴 ∈
ℂ) |
98 | | zcn 9322 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
99 | 98 | ad2antlr 489 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑛 ∈
ℂ) |
100 | 97, 99 | mulcomd 8041 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝐴 · 𝑛) = (𝑛 · 𝐴)) |
101 | 100 | oveq1d 5933 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚))) |
102 | 99, 97 | mulcld 8040 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑛 · 𝐴) ∈
ℂ) |
103 | 92 | zcnd 9440 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 · 𝑚) ∈
ℂ) |
104 | 102, 103 | subnegd 8337 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − -(𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚))) |
105 | 101, 104 | eqtr4d 2229 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) |
106 | 105 | oveq2d 5934 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚)))) |
107 | 103 | negcld 8317 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ -(𝑁 · 𝑚) ∈
ℂ) |
108 | 102, 107 | nncand 8335 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) = -(𝑁 · 𝑚)) |
109 | 106, 108 | eqtrd 2226 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = -(𝑁 · 𝑚)) |
110 | 95, 109 | breqtrrd 4057 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
111 | | oveq2 5926 |
. . . . . . . . 9
⊢ (1 =
((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ((𝑛 · 𝐴) − 1) = ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
112 | 111 | breq2d 4041 |
. . . . . . . 8
⊢ (1 =
((𝐴 · 𝑛) + (𝑁 · 𝑚)) → (𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))) |
113 | 110, 112 | syl5ibrcom 157 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
114 | 113 | rexlimdva 2611 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (∃𝑚 ∈
ℤ 1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
115 | 114 | reximdva 2596 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ ∃𝑚 ∈
ℤ 1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
116 | 87, 115 | syld 45 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
117 | 80, 116 | impbid 129 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ (𝐴 gcd 𝑁) = 1)) |
118 | 32, 54, 117 | 3bitrd 214 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈
(Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ (𝐴 gcd 𝑁) = 1)) |
119 | 8, 23, 118 | 3bitrd 214 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1)) |