MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngrd Structured version   Visualization version   GIF version

Theorem isdrngrd 19932
Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a right-inverse 𝐼(𝑥). See isdrngd 19931 for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b (𝜑𝐵 = (Base‘𝑅))
isdrngd.t (𝜑· = (.r𝑅))
isdrngd.z (𝜑0 = (0g𝑅))
isdrngd.u (𝜑1 = (1r𝑅))
isdrngd.r (𝜑𝑅 ∈ Ring)
isdrngd.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngd.o (𝜑10 )
isdrngd.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngd.j ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
isdrngrd.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
Assertion
Ref Expression
isdrngrd (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngrd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
2 eqid 2738 . . . . 5 (oppr𝑅) = (oppr𝑅)
3 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
42, 3opprbas 19784 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑅))
51, 4eqtrdi 2795 . . 3 (𝜑𝐵 = (Base‘(oppr𝑅)))
6 eqidd 2739 . . 3 (𝜑 → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
7 isdrngd.z . . . 4 (𝜑0 = (0g𝑅))
8 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
92, 8oppr0 19790 . . . 4 (0g𝑅) = (0g‘(oppr𝑅))
107, 9eqtrdi 2795 . . 3 (𝜑0 = (0g‘(oppr𝑅)))
11 isdrngd.u . . . 4 (𝜑1 = (1r𝑅))
12 eqid 2738 . . . . 5 (1r𝑅) = (1r𝑅)
132, 12oppr1 19791 . . . 4 (1r𝑅) = (1r‘(oppr𝑅))
1411, 13eqtrdi 2795 . . 3 (𝜑1 = (1r‘(oppr𝑅)))
15 isdrngd.r . . . 4 (𝜑𝑅 ∈ Ring)
162opprring 19788 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
1715, 16syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
18 eleq1w 2821 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
19 neeq1 3005 . . . . . . 7 (𝑦 = 𝑥 → (𝑦0𝑥0 ))
2018, 19anbi12d 630 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐵𝑦0 ) ↔ (𝑥𝐵𝑥0 )))
21203anbi2d 1439 . . . . 5 (𝑦 = 𝑥 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) ↔ (𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 ))))
22 oveq1 7262 . . . . . 6 (𝑦 = 𝑥 → (𝑦(.r‘(oppr𝑅))𝑧) = (𝑥(.r‘(oppr𝑅))𝑧))
2322neeq1d 3002 . . . . 5 (𝑦 = 𝑥 → ((𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ↔ (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 ))
2421, 23imbi12d 344 . . . 4 (𝑦 = 𝑥 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ) ↔ ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )))
25 eleq1w 2821 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
26 neeq1 3005 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥0𝑧0 ))
2725, 26anbi12d 630 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐵𝑥0 ) ↔ (𝑧𝐵𝑧0 )))
28273anbi3d 1440 . . . . . 6 (𝑥 = 𝑧 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) ↔ (𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 ))))
29 oveq2 7263 . . . . . . 7 (𝑥 = 𝑧 → (𝑦(.r‘(oppr𝑅))𝑥) = (𝑦(.r‘(oppr𝑅))𝑧))
3029neeq1d 3002 . . . . . 6 (𝑥 = 𝑧 → ((𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ↔ (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ))
3128, 30imbi12d 344 . . . . 5 (𝑥 = 𝑧 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ) ↔ ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )))
32 isdrngd.t . . . . . . . . . 10 (𝜑· = (.r𝑅))
33323ad2ant1 1131 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → · = (.r𝑅))
3433oveqd 7272 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
35 eqid 2738 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
36 eqid 2738 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
373, 35, 2, 36opprmul 19780 . . . . . . . 8 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑦)
3834, 37eqtr4di 2797 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑦(.r‘(oppr𝑅))𝑥))
39 isdrngd.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
4038, 39eqnetrrd 3011 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
41403com23 1124 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
4231, 41chvarvv 2003 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )
4324, 42chvarvv 2003 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )
44 isdrngd.o . . 3 (𝜑10 )
45 isdrngd.i . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
46 isdrngd.j . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
473, 35, 2, 36opprmul 19780 . . . 4 (𝐼(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝐼)
4832adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → · = (.r𝑅))
4948oveqd 7272 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = (𝑥(.r𝑅)𝐼))
50 isdrngrd.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
5149, 50eqtr3d 2780 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥(.r𝑅)𝐼) = 1 )
5247, 51eqtrid 2790 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼(.r‘(oppr𝑅))𝑥) = 1 )
535, 6, 10, 14, 17, 43, 44, 45, 46, 52isdrngd 19931 . 2 (𝜑 → (oppr𝑅) ∈ DivRing)
542opprdrng 19930 . 2 (𝑅 ∈ DivRing ↔ (oppr𝑅) ∈ DivRing)
5553, 54sylibr 233 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  0gc0g 17067  1rcur 19652  Ringcrg 19698  opprcoppr 19776  DivRingcdr 19906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908
This theorem is referenced by:  erngdvlem4-rN  38940
  Copyright terms: Public domain W3C validator