MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngrd Structured version   Visualization version   GIF version

Theorem isdrngrd 20651
Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a right-inverse 𝐼(𝑥). See isdrngd 20650 for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013.) Remove hypothesis. (Revised by SN, 19-Feb-2025.)
Hypotheses
Ref Expression
isdrngd.b (𝜑𝐵 = (Base‘𝑅))
isdrngd.t (𝜑· = (.r𝑅))
isdrngd.z (𝜑0 = (0g𝑅))
isdrngd.u (𝜑1 = (1r𝑅))
isdrngd.r (𝜑𝑅 ∈ Ring)
isdrngd.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngd.o (𝜑10 )
isdrngd.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngrd.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
Assertion
Ref Expression
isdrngrd (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngrd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
2 eqid 2729 . . . . 5 (oppr𝑅) = (oppr𝑅)
3 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
42, 3opprbas 20228 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑅))
51, 4eqtrdi 2780 . . 3 (𝜑𝐵 = (Base‘(oppr𝑅)))
6 eqidd 2730 . . 3 (𝜑 → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
7 isdrngd.z . . . 4 (𝜑0 = (0g𝑅))
8 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
92, 8oppr0 20234 . . . 4 (0g𝑅) = (0g‘(oppr𝑅))
107, 9eqtrdi 2780 . . 3 (𝜑0 = (0g‘(oppr𝑅)))
11 isdrngd.u . . . 4 (𝜑1 = (1r𝑅))
12 eqid 2729 . . . . 5 (1r𝑅) = (1r𝑅)
132, 12oppr1 20235 . . . 4 (1r𝑅) = (1r‘(oppr𝑅))
1411, 13eqtrdi 2780 . . 3 (𝜑1 = (1r‘(oppr𝑅)))
15 isdrngd.r . . . 4 (𝜑𝑅 ∈ Ring)
162opprring 20232 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
1715, 16syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
18 eleq1w 2811 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
19 neeq1 2987 . . . . . . 7 (𝑦 = 𝑥 → (𝑦0𝑥0 ))
2018, 19anbi12d 632 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐵𝑦0 ) ↔ (𝑥𝐵𝑥0 )))
21203anbi2d 1443 . . . . 5 (𝑦 = 𝑥 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) ↔ (𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 ))))
22 oveq1 7376 . . . . . 6 (𝑦 = 𝑥 → (𝑦(.r‘(oppr𝑅))𝑧) = (𝑥(.r‘(oppr𝑅))𝑧))
2322neeq1d 2984 . . . . 5 (𝑦 = 𝑥 → ((𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ↔ (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 ))
2421, 23imbi12d 344 . . . 4 (𝑦 = 𝑥 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ) ↔ ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )))
25 eleq1w 2811 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
26 neeq1 2987 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥0𝑧0 ))
2725, 26anbi12d 632 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐵𝑥0 ) ↔ (𝑧𝐵𝑧0 )))
28273anbi3d 1444 . . . . . 6 (𝑥 = 𝑧 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) ↔ (𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 ))))
29 oveq2 7377 . . . . . . 7 (𝑥 = 𝑧 → (𝑦(.r‘(oppr𝑅))𝑥) = (𝑦(.r‘(oppr𝑅))𝑧))
3029neeq1d 2984 . . . . . 6 (𝑥 = 𝑧 → ((𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ↔ (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ))
3128, 30imbi12d 344 . . . . 5 (𝑥 = 𝑧 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ) ↔ ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )))
32 isdrngd.t . . . . . . . . . 10 (𝜑· = (.r𝑅))
33323ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → · = (.r𝑅))
3433oveqd 7386 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
35 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
36 eqid 2729 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
373, 35, 2, 36opprmul 20225 . . . . . . . 8 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑦)
3834, 37eqtr4di 2782 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑦(.r‘(oppr𝑅))𝑥))
39 isdrngd.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
4038, 39eqnetrrd 2993 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
41403com23 1126 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
4231, 41chvarvv 1989 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )
4324, 42chvarvv 1989 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )
44 isdrngd.o . . 3 (𝜑10 )
45 isdrngd.i . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
463, 35, 2, 36opprmul 20225 . . . 4 (𝐼(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝐼)
4732adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → · = (.r𝑅))
4847oveqd 7386 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = (𝑥(.r𝑅)𝐼))
49 isdrngrd.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
5048, 49eqtr3d 2766 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥(.r𝑅)𝐼) = 1 )
5146, 50eqtrid 2776 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼(.r‘(oppr𝑅))𝑥) = 1 )
525, 6, 10, 14, 17, 43, 44, 45, 51isdrngd 20650 . 2 (𝜑 → (oppr𝑅) ∈ DivRing)
532opprdrng 20649 . 2 (𝑅 ∈ DivRing ↔ (oppr𝑅) ∈ DivRing)
5452, 53sylibr 234 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6499  (class class class)co 7369  Basecbs 17155  .rcmulr 17197  0gc0g 17378  1rcur 20066  Ringcrg 20118  opprcoppr 20221  DivRingcdr 20614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616
This theorem is referenced by:  erngdvlem4-rN  40966
  Copyright terms: Public domain W3C validator