Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngrd Structured version   Visualization version   GIF version

Theorem isdrngrd 19586
 Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a right-inverse 𝐼(𝑥). See isdrngd 19585 for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b (𝜑𝐵 = (Base‘𝑅))
isdrngd.t (𝜑· = (.r𝑅))
isdrngd.z (𝜑0 = (0g𝑅))
isdrngd.u (𝜑1 = (1r𝑅))
isdrngd.r (𝜑𝑅 ∈ Ring)
isdrngd.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngd.o (𝜑10 )
isdrngd.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngd.j ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
isdrngrd.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
Assertion
Ref Expression
isdrngrd (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngrd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
2 eqid 2759 . . . . 5 (oppr𝑅) = (oppr𝑅)
3 eqid 2759 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
42, 3opprbas 19440 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑅))
51, 4eqtrdi 2810 . . 3 (𝜑𝐵 = (Base‘(oppr𝑅)))
6 eqidd 2760 . . 3 (𝜑 → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
7 isdrngd.z . . . 4 (𝜑0 = (0g𝑅))
8 eqid 2759 . . . . 5 (0g𝑅) = (0g𝑅)
92, 8oppr0 19444 . . . 4 (0g𝑅) = (0g‘(oppr𝑅))
107, 9eqtrdi 2810 . . 3 (𝜑0 = (0g‘(oppr𝑅)))
11 isdrngd.u . . . 4 (𝜑1 = (1r𝑅))
12 eqid 2759 . . . . 5 (1r𝑅) = (1r𝑅)
132, 12oppr1 19445 . . . 4 (1r𝑅) = (1r‘(oppr𝑅))
1411, 13eqtrdi 2810 . . 3 (𝜑1 = (1r‘(oppr𝑅)))
15 isdrngd.r . . . 4 (𝜑𝑅 ∈ Ring)
162opprring 19442 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
1715, 16syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
18 eleq1w 2835 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
19 neeq1 3014 . . . . . . 7 (𝑦 = 𝑥 → (𝑦0𝑥0 ))
2018, 19anbi12d 634 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐵𝑦0 ) ↔ (𝑥𝐵𝑥0 )))
21203anbi2d 1439 . . . . 5 (𝑦 = 𝑥 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) ↔ (𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 ))))
22 oveq1 7155 . . . . . 6 (𝑦 = 𝑥 → (𝑦(.r‘(oppr𝑅))𝑧) = (𝑥(.r‘(oppr𝑅))𝑧))
2322neeq1d 3011 . . . . 5 (𝑦 = 𝑥 → ((𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ↔ (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 ))
2421, 23imbi12d 349 . . . 4 (𝑦 = 𝑥 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ) ↔ ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )))
25 eleq1w 2835 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
26 neeq1 3014 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥0𝑧0 ))
2725, 26anbi12d 634 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐵𝑥0 ) ↔ (𝑧𝐵𝑧0 )))
28273anbi3d 1440 . . . . . 6 (𝑥 = 𝑧 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) ↔ (𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 ))))
29 oveq2 7156 . . . . . . 7 (𝑥 = 𝑧 → (𝑦(.r‘(oppr𝑅))𝑥) = (𝑦(.r‘(oppr𝑅))𝑧))
3029neeq1d 3011 . . . . . 6 (𝑥 = 𝑧 → ((𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ↔ (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ))
3128, 30imbi12d 349 . . . . 5 (𝑥 = 𝑧 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ) ↔ ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )))
32 isdrngd.t . . . . . . . . . 10 (𝜑· = (.r𝑅))
33323ad2ant1 1131 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → · = (.r𝑅))
3433oveqd 7165 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
35 eqid 2759 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
36 eqid 2759 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
373, 35, 2, 36opprmul 19437 . . . . . . . 8 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑦)
3834, 37eqtr4di 2812 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑦(.r‘(oppr𝑅))𝑥))
39 isdrngd.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
4038, 39eqnetrrd 3020 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
41403com23 1124 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
4231, 41chvarvv 2006 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )
4324, 42chvarvv 2006 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )
44 isdrngd.o . . 3 (𝜑10 )
45 isdrngd.i . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
46 isdrngd.j . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
473, 35, 2, 36opprmul 19437 . . . 4 (𝐼(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝐼)
4832adantr 485 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → · = (.r𝑅))
4948oveqd 7165 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = (𝑥(.r𝑅)𝐼))
50 isdrngrd.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
5149, 50eqtr3d 2796 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥(.r𝑅)𝐼) = 1 )
5247, 51syl5eq 2806 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼(.r‘(oppr𝑅))𝑥) = 1 )
535, 6, 10, 14, 17, 43, 44, 45, 46, 52isdrngd 19585 . 2 (𝜑 → (oppr𝑅) ∈ DivRing)
542opprdrng 19584 . 2 (𝑅 ∈ DivRing ↔ (oppr𝑅) ∈ DivRing)
5553, 54sylibr 237 1 (𝜑𝑅 ∈ DivRing)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ‘cfv 6333  (class class class)co 7148  Basecbs 16531  .rcmulr 16614  0gc0g 16761  1rcur 19309  Ringcrg 19355  opprcoppr 19433  DivRingcdr 19560 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-1st 7691  df-2nd 7692  df-tpos 7900  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-nn 11665  df-2 11727  df-3 11728  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-0g 16763  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-grp 18162  df-minusg 18163  df-mgp 19298  df-ur 19310  df-ring 19357  df-oppr 19434  df-dvdsr 19452  df-unit 19453  df-invr 19483  df-dvr 19494  df-drng 19562 This theorem is referenced by:  erngdvlem4-rN  38565
 Copyright terms: Public domain W3C validator