Step | Hyp | Ref
| Expression |
1 | | isdrngd.b |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
2 | | eqid 2738 |
. . . . 5
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
3 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
4 | 2, 3 | opprbas 19784 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘(oppr‘𝑅)) |
5 | 1, 4 | eqtrdi 2795 |
. . 3
⊢ (𝜑 → 𝐵 =
(Base‘(oppr‘𝑅))) |
6 | | eqidd 2739 |
. . 3
⊢ (𝜑 →
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅))) |
7 | | isdrngd.z |
. . . 4
⊢ (𝜑 → 0 =
(0g‘𝑅)) |
8 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
9 | 2, 8 | oppr0 19790 |
. . . 4
⊢
(0g‘𝑅) =
(0g‘(oppr‘𝑅)) |
10 | 7, 9 | eqtrdi 2795 |
. . 3
⊢ (𝜑 → 0 =
(0g‘(oppr‘𝑅))) |
11 | | isdrngd.u |
. . . 4
⊢ (𝜑 → 1 =
(1r‘𝑅)) |
12 | | eqid 2738 |
. . . . 5
⊢
(1r‘𝑅) = (1r‘𝑅) |
13 | 2, 12 | oppr1 19791 |
. . . 4
⊢
(1r‘𝑅) =
(1r‘(oppr‘𝑅)) |
14 | 11, 13 | eqtrdi 2795 |
. . 3
⊢ (𝜑 → 1 =
(1r‘(oppr‘𝑅))) |
15 | | isdrngd.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
16 | 2 | opprring 19788 |
. . . 4
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) |
17 | 15, 16 | syl 17 |
. . 3
⊢ (𝜑 →
(oppr‘𝑅) ∈ Ring) |
18 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
19 | | neeq1 3005 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 ≠ 0 ↔ 𝑥 ≠ 0 )) |
20 | 18, 19 | anbi12d 630 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ))) |
21 | 20 | 3anbi2d 1439 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) ↔ (𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )))) |
22 | | oveq1 7262 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦(.r‘(oppr‘𝑅))𝑧) = (𝑥(.r‘(oppr‘𝑅))𝑧)) |
23 | 22 | neeq1d 3002 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 ↔ (𝑥(.r‘(oppr‘𝑅))𝑧) ≠ 0 )) |
24 | 21, 23 | imbi12d 344 |
. . . 4
⊢ (𝑦 = 𝑥 → (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 ) ↔ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑥(.r‘(oppr‘𝑅))𝑧) ≠ 0 ))) |
25 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
26 | | neeq1 3005 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ≠ 0 ↔ 𝑧 ≠ 0 )) |
27 | 25, 26 | anbi12d 630 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ↔ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ))) |
28 | 27 | 3anbi3d 1440 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) ↔ (𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )))) |
29 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑦(.r‘(oppr‘𝑅))𝑥) = (𝑦(.r‘(oppr‘𝑅))𝑧)) |
30 | 29 | neeq1d 3002 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑦(.r‘(oppr‘𝑅))𝑥) ≠ 0 ↔ (𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 )) |
31 | 28, 30 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑥) ≠ 0 ) ↔ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 ))) |
32 | | isdrngd.t |
. . . . . . . . . 10
⊢ (𝜑 → · =
(.r‘𝑅)) |
33 | 32 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → · =
(.r‘𝑅)) |
34 | 33 | oveqd 7272 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) = (𝑥(.r‘𝑅)𝑦)) |
35 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
36 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
37 | 3, 35, 2, 36 | opprmul 19780 |
. . . . . . . 8
⊢ (𝑦(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)𝑦) |
38 | 34, 37 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) = (𝑦(.r‘(oppr‘𝑅))𝑥)) |
39 | | isdrngd.n |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) ≠ 0 ) |
40 | 38, 39 | eqnetrrd 3011 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑥) ≠ 0 ) |
41 | 40 | 3com23 1124 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑥) ≠ 0 ) |
42 | 31, 41 | chvarvv 2003 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 ) |
43 | 24, 42 | chvarvv 2003 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑥(.r‘(oppr‘𝑅))𝑧) ≠ 0 ) |
44 | | isdrngd.o |
. . 3
⊢ (𝜑 → 1 ≠ 0 ) |
45 | | isdrngd.i |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ∈ 𝐵) |
46 | | isdrngd.j |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ≠ 0 ) |
47 | 3, 35, 2, 36 | opprmul 19780 |
. . . 4
⊢ (𝐼(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)𝐼) |
48 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → · =
(.r‘𝑅)) |
49 | 48 | oveqd 7272 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑥 · 𝐼) = (𝑥(.r‘𝑅)𝐼)) |
50 | | isdrngrd.k |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑥 · 𝐼) = 1 ) |
51 | 49, 50 | eqtr3d 2780 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑥(.r‘𝑅)𝐼) = 1 ) |
52 | 47, 51 | eqtrid 2790 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝐼(.r‘(oppr‘𝑅))𝑥) = 1 ) |
53 | 5, 6, 10, 14, 17, 43, 44, 45, 46, 52 | isdrngd 19931 |
. 2
⊢ (𝜑 →
(oppr‘𝑅) ∈ DivRing) |
54 | 2 | opprdrng 19930 |
. 2
⊢ (𝑅 ∈ DivRing ↔
(oppr‘𝑅) ∈ DivRing) |
55 | 53, 54 | sylibr 233 |
1
⊢ (𝜑 → 𝑅 ∈ DivRing) |