| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isdrngdOLD.b | . . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | 
| 2 |  | eqid 2737 | . . . . 5
⊢
(oppr‘𝑅) = (oppr‘𝑅) | 
| 3 |  | eqid 2737 | . . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 4 | 2, 3 | opprbas 20341 | . . . 4
⊢
(Base‘𝑅) =
(Base‘(oppr‘𝑅)) | 
| 5 | 1, 4 | eqtrdi 2793 | . . 3
⊢ (𝜑 → 𝐵 =
(Base‘(oppr‘𝑅))) | 
| 6 |  | eqidd 2738 | . . 3
⊢ (𝜑 →
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅))) | 
| 7 |  | isdrngdOLD.z | . . . 4
⊢ (𝜑 → 0 =
(0g‘𝑅)) | 
| 8 |  | eqid 2737 | . . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 9 | 2, 8 | oppr0 20349 | . . . 4
⊢
(0g‘𝑅) =
(0g‘(oppr‘𝑅)) | 
| 10 | 7, 9 | eqtrdi 2793 | . . 3
⊢ (𝜑 → 0 =
(0g‘(oppr‘𝑅))) | 
| 11 |  | isdrngdOLD.u | . . . 4
⊢ (𝜑 → 1 =
(1r‘𝑅)) | 
| 12 |  | eqid 2737 | . . . . 5
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 13 | 2, 12 | oppr1 20350 | . . . 4
⊢
(1r‘𝑅) =
(1r‘(oppr‘𝑅)) | 
| 14 | 11, 13 | eqtrdi 2793 | . . 3
⊢ (𝜑 → 1 =
(1r‘(oppr‘𝑅))) | 
| 15 |  | isdrngdOLD.r | . . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 16 | 2 | opprring 20347 | . . . 4
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) | 
| 17 | 15, 16 | syl 17 | . . 3
⊢ (𝜑 →
(oppr‘𝑅) ∈ Ring) | 
| 18 |  | eleq1w 2824 | . . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | 
| 19 |  | neeq1 3003 | . . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 ≠ 0 ↔ 𝑥 ≠ 0 )) | 
| 20 | 18, 19 | anbi12d 632 | . . . . . 6
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ))) | 
| 21 | 20 | 3anbi2d 1443 | . . . . 5
⊢ (𝑦 = 𝑥 → ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) ↔ (𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )))) | 
| 22 |  | oveq1 7438 | . . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦(.r‘(oppr‘𝑅))𝑧) = (𝑥(.r‘(oppr‘𝑅))𝑧)) | 
| 23 | 22 | neeq1d 3000 | . . . . 5
⊢ (𝑦 = 𝑥 → ((𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 ↔ (𝑥(.r‘(oppr‘𝑅))𝑧) ≠ 0 )) | 
| 24 | 21, 23 | imbi12d 344 | . . . 4
⊢ (𝑦 = 𝑥 → (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 ) ↔ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑥(.r‘(oppr‘𝑅))𝑧) ≠ 0 ))) | 
| 25 |  | eleq1w 2824 | . . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | 
| 26 |  | neeq1 3003 | . . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ≠ 0 ↔ 𝑧 ≠ 0 )) | 
| 27 | 25, 26 | anbi12d 632 | . . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ↔ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ))) | 
| 28 | 27 | 3anbi3d 1444 | . . . . . 6
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) ↔ (𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )))) | 
| 29 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑦(.r‘(oppr‘𝑅))𝑥) = (𝑦(.r‘(oppr‘𝑅))𝑧)) | 
| 30 | 29 | neeq1d 3000 | . . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑦(.r‘(oppr‘𝑅))𝑥) ≠ 0 ↔ (𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 )) | 
| 31 | 28, 30 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑥) ≠ 0 ) ↔ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 ))) | 
| 32 |  | isdrngdOLD.t | . . . . . . . . . 10
⊢ (𝜑 → · =
(.r‘𝑅)) | 
| 33 | 32 | 3ad2ant1 1134 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → · =
(.r‘𝑅)) | 
| 34 | 33 | oveqd 7448 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) = (𝑥(.r‘𝑅)𝑦)) | 
| 35 |  | eqid 2737 | . . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 36 |  | eqid 2737 | . . . . . . . . 9
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) | 
| 37 | 3, 35, 2, 36 | opprmul 20337 | . . . . . . . 8
⊢ (𝑦(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)𝑦) | 
| 38 | 34, 37 | eqtr4di 2795 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) = (𝑦(.r‘(oppr‘𝑅))𝑥)) | 
| 39 |  | isdrngdOLD.n | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥 · 𝑦) ≠ 0 ) | 
| 40 | 38, 39 | eqnetrrd 3009 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑥) ≠ 0 ) | 
| 41 | 40 | 3com23 1127 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑥) ≠ 0 ) | 
| 42 | 31, 41 | chvarvv 1998 | . . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦(.r‘(oppr‘𝑅))𝑧) ≠ 0 ) | 
| 43 | 24, 42 | chvarvv 1998 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑥(.r‘(oppr‘𝑅))𝑧) ≠ 0 ) | 
| 44 |  | isdrngdOLD.o | . . 3
⊢ (𝜑 → 1 ≠ 0 ) | 
| 45 |  | isdrngdOLD.i | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ∈ 𝐵) | 
| 46 |  | isdrngdOLD.j | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → 𝐼 ≠ 0 ) | 
| 47 | 3, 35, 2, 36 | opprmul 20337 | . . . 4
⊢ (𝐼(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)𝐼) | 
| 48 | 32 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → · =
(.r‘𝑅)) | 
| 49 | 48 | oveqd 7448 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑥 · 𝐼) = (𝑥(.r‘𝑅)𝐼)) | 
| 50 |  | isdrngrdOLD.k | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑥 · 𝐼) = 1 ) | 
| 51 | 49, 50 | eqtr3d 2779 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝑥(.r‘𝑅)𝐼) = 1 ) | 
| 52 | 47, 51 | eqtrid 2789 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) → (𝐼(.r‘(oppr‘𝑅))𝑥) = 1 ) | 
| 53 | 5, 6, 10, 14, 17, 43, 44, 45, 46, 52 | isdrngdOLD 20767 | . 2
⊢ (𝜑 →
(oppr‘𝑅) ∈ DivRing) | 
| 54 | 2 | opprdrng 20764 | . 2
⊢ (𝑅 ∈ DivRing ↔
(oppr‘𝑅) ∈ DivRing) | 
| 55 | 53, 54 | sylibr 234 | 1
⊢ (𝜑 → 𝑅 ∈ DivRing) |