MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem17 Structured version   Visualization version   GIF version

Theorem ackbij1lem17 10257
Description: Lemma for ackbij1 10259. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem17 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem17
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . 3 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem10 10250 . 2 𝐹:(𝒫 ω ∩ Fin)⟶ω
31ackbij1lem16 10256 . . 3 ((𝑎 ∈ (𝒫 ω ∩ Fin) ∧ 𝑏 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
43rgen2 3186 . 2 𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
5 dff13 7257 . 2 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω ↔ (𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ ∀𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
62, 4, 5mpbir2an 711 1 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wral 3050  cin 3930  𝒫 cpw 4580  {csn 4606   ciun 4971  cmpt 5205   × cxp 5663  wf 6537  1-1wf1 6538  cfv 6541  ωcom 7869  Fincfn 8967  cardccrd 9957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-dju 9923  df-card 9961
This theorem is referenced by:  ackbij1  10259  ackbij1b  10260  ackbij2lem2  10261
  Copyright terms: Public domain W3C validator