| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem17 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10120. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem17 | ⊢ 𝐹:(𝒫 ω ∩ Fin)–1-1→ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 2 | 1 | ackbij1lem10 10111 | . 2 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| 3 | 1 | ackbij1lem16 10117 | . . 3 ⊢ ((𝑎 ∈ (𝒫 ω ∩ Fin) ∧ 𝑏 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
| 4 | 3 | rgen2 3170 | . 2 ⊢ ∀𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏) |
| 5 | dff13 7183 | . 2 ⊢ (𝐹:(𝒫 ω ∩ Fin)–1-1→ω ↔ (𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ ∀𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏))) | |
| 6 | 2, 4, 5 | mpbir2an 711 | 1 ⊢ 𝐹:(𝒫 ω ∩ Fin)–1-1→ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∀wral 3045 ∩ cin 3899 𝒫 cpw 4548 {csn 4574 ∪ ciun 4939 ↦ cmpt 5170 × cxp 5612 ⟶wf 6473 –1-1→wf1 6474 ‘cfv 6477 ωcom 7791 Fincfn 8864 cardccrd 9820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 |
| This theorem is referenced by: ackbij1 10120 ackbij1b 10121 ackbij2lem2 10122 |
| Copyright terms: Public domain | W3C validator |