MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem17 Structured version   Visualization version   GIF version

Theorem ackbij1lem17 10306
Description: Lemma for ackbij1 10308. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem17 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem17
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . 3 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem10 10299 . 2 𝐹:(𝒫 ω ∩ Fin)⟶ω
31ackbij1lem16 10305 . . 3 ((𝑎 ∈ (𝒫 ω ∩ Fin) ∧ 𝑏 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
43rgen2 3205 . 2 𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
5 dff13 7294 . 2 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω ↔ (𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ ∀𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
62, 4, 5mpbir2an 710 1 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wral 3067  cin 3975  𝒫 cpw 4622  {csn 4648   ciun 5015  cmpt 5249   × cxp 5698  wf 6571  1-1wf1 6572  cfv 6575  ωcom 7905  Fincfn 9005  cardccrd 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-oadd 8528  df-er 8765  df-map 8888  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-dju 9972  df-card 10010
This theorem is referenced by:  ackbij1  10308  ackbij1b  10309  ackbij2lem2  10310
  Copyright terms: Public domain W3C validator