![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem17 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 10284. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem17 | ⊢ 𝐹:(𝒫 ω ∩ Fin)–1-1→ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
2 | 1 | ackbij1lem10 10275 | . 2 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
3 | 1 | ackbij1lem16 10281 | . . 3 ⊢ ((𝑎 ∈ (𝒫 ω ∩ Fin) ∧ 𝑏 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
4 | 3 | rgen2 3199 | . 2 ⊢ ∀𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏) |
5 | dff13 7282 | . 2 ⊢ (𝐹:(𝒫 ω ∩ Fin)–1-1→ω ↔ (𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ ∀𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏))) | |
6 | 2, 4, 5 | mpbir2an 711 | 1 ⊢ 𝐹:(𝒫 ω ∩ Fin)–1-1→ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∀wral 3061 ∩ cin 3965 𝒫 cpw 4608 {csn 4634 ∪ ciun 4999 ↦ cmpt 5234 × cxp 5691 ⟶wf 6565 –1-1→wf1 6566 ‘cfv 6569 ωcom 7894 Fincfn 8993 cardccrd 9982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-dju 9948 df-card 9986 |
This theorem is referenced by: ackbij1 10284 ackbij1b 10285 ackbij2lem2 10286 |
Copyright terms: Public domain | W3C validator |