| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem17 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem17 | ⊢ 𝐹:(𝒫 ω ∩ Fin)–1-1→ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 2 | 1 | ackbij1lem10 10181 | . 2 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| 3 | 1 | ackbij1lem16 10187 | . . 3 ⊢ ((𝑎 ∈ (𝒫 ω ∩ Fin) ∧ 𝑏 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
| 4 | 3 | rgen2 3177 | . 2 ⊢ ∀𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏) |
| 5 | dff13 7229 | . 2 ⊢ (𝐹:(𝒫 ω ∩ Fin)–1-1→ω ↔ (𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ ∀𝑎 ∈ (𝒫 ω ∩ Fin)∀𝑏 ∈ (𝒫 ω ∩ Fin)((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏))) | |
| 6 | 2, 4, 5 | mpbir2an 711 | 1 ⊢ 𝐹:(𝒫 ω ∩ Fin)–1-1→ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3044 ∩ cin 3913 𝒫 cpw 4563 {csn 4589 ∪ ciun 4955 ↦ cmpt 5188 × cxp 5636 ⟶wf 6507 –1-1→wf1 6508 ‘cfv 6511 ωcom 7842 Fincfn 8918 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 |
| This theorem is referenced by: ackbij1 10190 ackbij1b 10191 ackbij2lem2 10192 |
| Copyright terms: Public domain | W3C validator |