![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvsqrt | Structured version Visualization version GIF version |
Description: The derivative of the real square root function. (Contributed by Mario Carneiro, 1-May-2016.) |
Ref | Expression |
---|---|
dvsqrt | ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfcn 12479 | . . 3 ⊢ (1 / 2) ∈ ℂ | |
2 | dvcxp1 26767 | . . 3 ⊢ ((1 / 2) ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1)))) |
4 | rpcn 13038 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
5 | cxpsqrt 26730 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) |
7 | 6 | mpteq2ia 5256 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐(1 / 2))) = (𝑥 ∈ ℝ+ ↦ (√‘𝑥)) |
8 | 7 | oveq2i 7435 | . 2 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐(1 / 2)))) = (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) |
9 | 1p0e1 12388 | . . . . . . . . . . 11 ⊢ (1 + 0) = 1 | |
10 | ax-1cn 11216 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℂ | |
11 | 2halves 12492 | . . . . . . . . . . . 12 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ((1 / 2) + (1 / 2)) = 1 |
13 | 9, 12 | eqtr4i 2757 | . . . . . . . . . 10 ⊢ (1 + 0) = ((1 / 2) + (1 / 2)) |
14 | 0cn 11256 | . . . . . . . . . . 11 ⊢ 0 ∈ ℂ | |
15 | addsubeq4 11525 | . . . . . . . . . . 11 ⊢ (((1 ∈ ℂ ∧ 0 ∈ ℂ) ∧ ((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ)) → ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2)))) | |
16 | 10, 14, 1, 1, 15 | mp4an 691 | . . . . . . . . . 10 ⊢ ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2))) |
17 | 13, 16 | mpbi 229 | . . . . . . . . 9 ⊢ ((1 / 2) − 1) = (0 − (1 / 2)) |
18 | df-neg 11497 | . . . . . . . . 9 ⊢ -(1 / 2) = (0 − (1 / 2)) | |
19 | 17, 18 | eqtr4i 2757 | . . . . . . . 8 ⊢ ((1 / 2) − 1) = -(1 / 2) |
20 | 19 | oveq2i 7435 | . . . . . . 7 ⊢ (𝑥↑𝑐((1 / 2) − 1)) = (𝑥↑𝑐-(1 / 2)) |
21 | rpne0 13044 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
22 | 1 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → (1 / 2) ∈ ℂ) |
23 | 4, 21, 22 | cxpnegd 26742 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → (𝑥↑𝑐-(1 / 2)) = (1 / (𝑥↑𝑐(1 / 2)))) |
24 | 20, 23 | eqtrid 2778 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (𝑥↑𝑐((1 / 2) − 1)) = (1 / (𝑥↑𝑐(1 / 2)))) |
25 | 6 | oveq2d 7440 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (1 / (𝑥↑𝑐(1 / 2))) = (1 / (√‘𝑥))) |
26 | 24, 25 | eqtrd 2766 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → (𝑥↑𝑐((1 / 2) − 1)) = (1 / (√‘𝑥))) |
27 | 26 | oveq2d 7440 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))) = ((1 / 2) · (1 / (√‘𝑥)))) |
28 | 10 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 1 ∈ ℂ) |
29 | 2cnne0 12474 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
30 | 29 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
31 | rpsqrtcl 15269 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+) | |
32 | 31 | rpcnne0d 13079 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) |
33 | divmuldiv 11965 | . . . . . 6 ⊢ (((1 ∈ ℂ ∧ 1 ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))) → ((1 / 2) · (1 / (√‘𝑥))) = ((1 · 1) / (2 · (√‘𝑥)))) | |
34 | 28, 28, 30, 32, 33 | syl22anc 837 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → ((1 / 2) · (1 / (√‘𝑥))) = ((1 · 1) / (2 · (√‘𝑥)))) |
35 | 1t1e1 12426 | . . . . . 6 ⊢ (1 · 1) = 1 | |
36 | 35 | oveq1i 7434 | . . . . 5 ⊢ ((1 · 1) / (2 · (√‘𝑥))) = (1 / (2 · (√‘𝑥))) |
37 | 34, 36 | eqtrdi 2782 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → ((1 / 2) · (1 / (√‘𝑥))) = (1 / (2 · (√‘𝑥)))) |
38 | 27, 37 | eqtrd 2766 | . . 3 ⊢ (𝑥 ∈ ℝ+ → ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))) = (1 / (2 · (√‘𝑥)))) |
39 | 38 | mpteq2ia 5256 | . 2 ⊢ (𝑥 ∈ ℝ+ ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1)))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))) |
40 | 3, 8, 39 | 3eqtr3i 2762 | 1 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 ℝcr 11157 0cc0 11158 1c1 11159 + caddc 11161 · cmul 11163 − cmin 11494 -cneg 11495 / cdiv 11921 2c2 12319 ℝ+crp 13028 √csqrt 15238 D cdv 25883 ↑𝑐ccxp 26582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-ioc 13383 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-fac 14291 df-bc 14320 df-hash 14348 df-shft 15072 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-limsup 15473 df-clim 15490 df-rlim 15491 df-sum 15691 df-ef 16069 df-sin 16071 df-cos 16072 df-pi 16074 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-mulg 19062 df-cntz 19311 df-cmn 19780 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-fbas 21340 df-fg 21341 df-cnfld 21344 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cld 23014 df-ntr 23015 df-cls 23016 df-nei 23093 df-lp 23131 df-perf 23132 df-cn 23222 df-cnp 23223 df-haus 23310 df-cmp 23382 df-tx 23557 df-hmeo 23750 df-fil 23841 df-fm 23933 df-flim 23934 df-flf 23935 df-xms 24317 df-ms 24318 df-tms 24319 df-cncf 24889 df-limc 25886 df-dv 25887 df-log 26583 df-cxp 26584 |
This theorem is referenced by: loglesqrt 26789 divsqrtsumlem 27008 areacirclem1 37409 |
Copyright terms: Public domain | W3C validator |