MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsunif Structured version   Visualization version   GIF version

Theorem addsunif 28050
Description: Uniformity theorem for surreal addition. This theorem states that we can use any cuts that define 𝐴 and 𝐵 in the definition of surreal addition. Theorem 3.2 of [Gonshor] p. 15. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsunif.1 (𝜑𝐿 <<s 𝑅)
addsunif.2 (𝜑𝑀 <<s 𝑆)
addsunif.3 (𝜑𝐴 = (𝐿 |s 𝑅))
addsunif.4 (𝜑𝐵 = (𝑀 |s 𝑆))
Assertion
Ref Expression
addsunif (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})))
Distinct variable groups:   𝐴,𝑚   𝐴,𝑠,𝑡   𝑧,𝐴   𝐵,𝑙   𝐵,𝑟,𝑤   𝑦,𝐵   𝐿,𝑙,𝑦   𝑚,𝑀,𝑧   𝑅,𝑟,𝑤   𝑆,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑡,𝑚,𝑠,𝑟,𝑙)   𝐴(𝑦,𝑤,𝑟,𝑙)   𝐵(𝑧,𝑡,𝑚,𝑠)   𝑅(𝑦,𝑧,𝑡,𝑚,𝑠,𝑙)   𝑆(𝑦,𝑧,𝑤,𝑚,𝑟,𝑙)   𝐿(𝑧,𝑤,𝑡,𝑚,𝑠,𝑟)   𝑀(𝑦,𝑤,𝑡,𝑠,𝑟,𝑙)

Proof of Theorem addsunif
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsunif.1 . . 3 (𝜑𝐿 <<s 𝑅)
2 addsunif.2 . . 3 (𝜑𝑀 <<s 𝑆)
3 addsunif.3 . . 3 (𝜑𝐴 = (𝐿 |s 𝑅))
4 addsunif.4 . . 3 (𝜑𝐵 = (𝑀 |s 𝑆))
51, 2, 3, 4addsuniflem 28049 . 2 (𝜑 → (𝐴 +s 𝐵) = (({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )})))
6 oveq1 7438 . . . . . . . 8 (𝑙 = 𝑏 → (𝑙 +s 𝐵) = (𝑏 +s 𝐵))
76eqeq2d 2746 . . . . . . 7 (𝑙 = 𝑏 → (𝑦 = (𝑙 +s 𝐵) ↔ 𝑦 = (𝑏 +s 𝐵)))
87cbvrexvw 3236 . . . . . 6 (∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏𝐿 𝑦 = (𝑏 +s 𝐵))
9 eqeq1 2739 . . . . . . 7 (𝑦 = 𝑎 → (𝑦 = (𝑏 +s 𝐵) ↔ 𝑎 = (𝑏 +s 𝐵)))
109rexbidv 3177 . . . . . 6 (𝑦 = 𝑎 → (∃𝑏𝐿 𝑦 = (𝑏 +s 𝐵) ↔ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)))
118, 10bitrid 283 . . . . 5 (𝑦 = 𝑎 → (∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)))
1211cbvabv 2810 . . . 4 {𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} = {𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)}
13 oveq2 7439 . . . . . . . 8 (𝑚 = 𝑑 → (𝐴 +s 𝑚) = (𝐴 +s 𝑑))
1413eqeq2d 2746 . . . . . . 7 (𝑚 = 𝑑 → (𝑧 = (𝐴 +s 𝑚) ↔ 𝑧 = (𝐴 +s 𝑑)))
1514cbvrexvw 3236 . . . . . 6 (∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑𝑀 𝑧 = (𝐴 +s 𝑑))
16 eqeq1 2739 . . . . . . 7 (𝑧 = 𝑐 → (𝑧 = (𝐴 +s 𝑑) ↔ 𝑐 = (𝐴 +s 𝑑)))
1716rexbidv 3177 . . . . . 6 (𝑧 = 𝑐 → (∃𝑑𝑀 𝑧 = (𝐴 +s 𝑑) ↔ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)))
1815, 17bitrid 283 . . . . 5 (𝑧 = 𝑐 → (∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)))
1918cbvabv 2810 . . . 4 {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)} = {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}
2012, 19uneq12i 4176 . . 3 ({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) = ({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)})
21 oveq1 7438 . . . . . . . 8 (𝑟 = 𝑓 → (𝑟 +s 𝐵) = (𝑓 +s 𝐵))
2221eqeq2d 2746 . . . . . . 7 (𝑟 = 𝑓 → (𝑤 = (𝑟 +s 𝐵) ↔ 𝑤 = (𝑓 +s 𝐵)))
2322cbvrexvw 3236 . . . . . 6 (∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓𝑅 𝑤 = (𝑓 +s 𝐵))
24 eqeq1 2739 . . . . . . 7 (𝑤 = 𝑒 → (𝑤 = (𝑓 +s 𝐵) ↔ 𝑒 = (𝑓 +s 𝐵)))
2524rexbidv 3177 . . . . . 6 (𝑤 = 𝑒 → (∃𝑓𝑅 𝑤 = (𝑓 +s 𝐵) ↔ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)))
2623, 25bitrid 283 . . . . 5 (𝑤 = 𝑒 → (∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)))
2726cbvabv 2810 . . . 4 {𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} = {𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)}
28 oveq2 7439 . . . . . . . 8 (𝑠 = → (𝐴 +s 𝑠) = (𝐴 +s ))
2928eqeq2d 2746 . . . . . . 7 (𝑠 = → (𝑡 = (𝐴 +s 𝑠) ↔ 𝑡 = (𝐴 +s )))
3029cbvrexvw 3236 . . . . . 6 (∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃𝑆 𝑡 = (𝐴 +s ))
31 eqeq1 2739 . . . . . . 7 (𝑡 = 𝑔 → (𝑡 = (𝐴 +s ) ↔ 𝑔 = (𝐴 +s )))
3231rexbidv 3177 . . . . . 6 (𝑡 = 𝑔 → (∃𝑆 𝑡 = (𝐴 +s ) ↔ ∃𝑆 𝑔 = (𝐴 +s )))
3330, 32bitrid 283 . . . . 5 (𝑡 = 𝑔 → (∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃𝑆 𝑔 = (𝐴 +s )))
3433cbvabv 2810 . . . 4 {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)} = {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )}
3527, 34uneq12i 4176 . . 3 ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)}) = ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )})
3620, 35oveq12i 7443 . 2 (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})) = (({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )}))
375, 36eqtr4di 2793 1 (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2712  wrex 3068  cun 3961   class class class wbr 5148  (class class class)co 7431   <<s csslt 27840   |s cscut 27842   +s cadds 28007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec2 27997  df-adds 28008
This theorem is referenced by:  addsasslem1  28051  addsasslem2  28052  negsid  28088  addsdilem2  28193  onaddscl  28301  n0scut  28353  1p1e2s  28415  nohalf  28422  halfcut  28431  readdscl  28446
  Copyright terms: Public domain W3C validator