MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsunif Structured version   Visualization version   GIF version

Theorem addsunif 27955
Description: Uniformity theorem for surreal addition. This theorem states that we can use any cuts that define 𝐴 and 𝐵 in the definition of surreal addition. Theorem 3.2 of [Gonshor] p. 15. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsunif.1 (𝜑𝐿 <<s 𝑅)
addsunif.2 (𝜑𝑀 <<s 𝑆)
addsunif.3 (𝜑𝐴 = (𝐿 |s 𝑅))
addsunif.4 (𝜑𝐵 = (𝑀 |s 𝑆))
Assertion
Ref Expression
addsunif (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})))
Distinct variable groups:   𝐴,𝑚   𝐴,𝑠,𝑡   𝑧,𝐴   𝐵,𝑙   𝐵,𝑟,𝑤   𝑦,𝐵   𝐿,𝑙,𝑦   𝑚,𝑀,𝑧   𝑅,𝑟,𝑤   𝑆,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑡,𝑚,𝑠,𝑟,𝑙)   𝐴(𝑦,𝑤,𝑟,𝑙)   𝐵(𝑧,𝑡,𝑚,𝑠)   𝑅(𝑦,𝑧,𝑡,𝑚,𝑠,𝑙)   𝑆(𝑦,𝑧,𝑤,𝑚,𝑟,𝑙)   𝐿(𝑧,𝑤,𝑡,𝑚,𝑠,𝑟)   𝑀(𝑦,𝑤,𝑡,𝑠,𝑟,𝑙)

Proof of Theorem addsunif
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsunif.1 . . 3 (𝜑𝐿 <<s 𝑅)
2 addsunif.2 . . 3 (𝜑𝑀 <<s 𝑆)
3 addsunif.3 . . 3 (𝜑𝐴 = (𝐿 |s 𝑅))
4 addsunif.4 . . 3 (𝜑𝐵 = (𝑀 |s 𝑆))
51, 2, 3, 4addsuniflem 27954 . 2 (𝜑 → (𝐴 +s 𝐵) = (({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )})))
6 oveq1 7362 . . . . . . . 8 (𝑙 = 𝑏 → (𝑙 +s 𝐵) = (𝑏 +s 𝐵))
76eqeq2d 2744 . . . . . . 7 (𝑙 = 𝑏 → (𝑦 = (𝑙 +s 𝐵) ↔ 𝑦 = (𝑏 +s 𝐵)))
87cbvrexvw 3213 . . . . . 6 (∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏𝐿 𝑦 = (𝑏 +s 𝐵))
9 eqeq1 2737 . . . . . . 7 (𝑦 = 𝑎 → (𝑦 = (𝑏 +s 𝐵) ↔ 𝑎 = (𝑏 +s 𝐵)))
109rexbidv 3158 . . . . . 6 (𝑦 = 𝑎 → (∃𝑏𝐿 𝑦 = (𝑏 +s 𝐵) ↔ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)))
118, 10bitrid 283 . . . . 5 (𝑦 = 𝑎 → (∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)))
1211cbvabv 2803 . . . 4 {𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} = {𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)}
13 oveq2 7363 . . . . . . . 8 (𝑚 = 𝑑 → (𝐴 +s 𝑚) = (𝐴 +s 𝑑))
1413eqeq2d 2744 . . . . . . 7 (𝑚 = 𝑑 → (𝑧 = (𝐴 +s 𝑚) ↔ 𝑧 = (𝐴 +s 𝑑)))
1514cbvrexvw 3213 . . . . . 6 (∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑𝑀 𝑧 = (𝐴 +s 𝑑))
16 eqeq1 2737 . . . . . . 7 (𝑧 = 𝑐 → (𝑧 = (𝐴 +s 𝑑) ↔ 𝑐 = (𝐴 +s 𝑑)))
1716rexbidv 3158 . . . . . 6 (𝑧 = 𝑐 → (∃𝑑𝑀 𝑧 = (𝐴 +s 𝑑) ↔ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)))
1815, 17bitrid 283 . . . . 5 (𝑧 = 𝑐 → (∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)))
1918cbvabv 2803 . . . 4 {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)} = {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}
2012, 19uneq12i 4117 . . 3 ({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) = ({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)})
21 oveq1 7362 . . . . . . . 8 (𝑟 = 𝑓 → (𝑟 +s 𝐵) = (𝑓 +s 𝐵))
2221eqeq2d 2744 . . . . . . 7 (𝑟 = 𝑓 → (𝑤 = (𝑟 +s 𝐵) ↔ 𝑤 = (𝑓 +s 𝐵)))
2322cbvrexvw 3213 . . . . . 6 (∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓𝑅 𝑤 = (𝑓 +s 𝐵))
24 eqeq1 2737 . . . . . . 7 (𝑤 = 𝑒 → (𝑤 = (𝑓 +s 𝐵) ↔ 𝑒 = (𝑓 +s 𝐵)))
2524rexbidv 3158 . . . . . 6 (𝑤 = 𝑒 → (∃𝑓𝑅 𝑤 = (𝑓 +s 𝐵) ↔ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)))
2623, 25bitrid 283 . . . . 5 (𝑤 = 𝑒 → (∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)))
2726cbvabv 2803 . . . 4 {𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} = {𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)}
28 oveq2 7363 . . . . . . . 8 (𝑠 = → (𝐴 +s 𝑠) = (𝐴 +s ))
2928eqeq2d 2744 . . . . . . 7 (𝑠 = → (𝑡 = (𝐴 +s 𝑠) ↔ 𝑡 = (𝐴 +s )))
3029cbvrexvw 3213 . . . . . 6 (∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃𝑆 𝑡 = (𝐴 +s ))
31 eqeq1 2737 . . . . . . 7 (𝑡 = 𝑔 → (𝑡 = (𝐴 +s ) ↔ 𝑔 = (𝐴 +s )))
3231rexbidv 3158 . . . . . 6 (𝑡 = 𝑔 → (∃𝑆 𝑡 = (𝐴 +s ) ↔ ∃𝑆 𝑔 = (𝐴 +s )))
3330, 32bitrid 283 . . . . 5 (𝑡 = 𝑔 → (∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃𝑆 𝑔 = (𝐴 +s )))
3433cbvabv 2803 . . . 4 {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)} = {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )}
3527, 34uneq12i 4117 . . 3 ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)}) = ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )})
3620, 35oveq12i 7367 . 2 (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})) = (({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )}))
375, 36eqtr4di 2786 1 (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2711  wrex 3058  cun 3897   class class class wbr 5095  (class class class)co 7355   <<s csslt 27730   |s cscut 27732   +s cadds 27912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-1o 8394  df-2o 8395  df-nadd 8590  df-no 27591  df-slt 27592  df-bday 27593  df-sle 27694  df-sslt 27731  df-scut 27733  df-0s 27778  df-made 27798  df-old 27799  df-left 27801  df-right 27802  df-norec2 27902  df-adds 27913
This theorem is referenced by:  addsasslem1  27956  addsasslem2  27957  negsid  27993  addsdilem2  28101  onaddscl  28220  n0scut  28272  1p1e2s  28349  twocut  28356  halfcut  28388  pw2cut2  28392  readdscl  28411
  Copyright terms: Public domain W3C validator