MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsunif Structured version   Visualization version   GIF version

Theorem addsunif 27916
Description: Uniformity theorem for surreal addition. This theorem states that we can use any cuts that define 𝐴 and 𝐵 in the definition of surreal addition. Theorem 3.2 of [Gonshor] p. 15. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsunif.1 (𝜑𝐿 <<s 𝑅)
addsunif.2 (𝜑𝑀 <<s 𝑆)
addsunif.3 (𝜑𝐴 = (𝐿 |s 𝑅))
addsunif.4 (𝜑𝐵 = (𝑀 |s 𝑆))
Assertion
Ref Expression
addsunif (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})))
Distinct variable groups:   𝐴,𝑚   𝐴,𝑠,𝑡   𝑧,𝐴   𝐵,𝑙   𝐵,𝑟,𝑤   𝑦,𝐵   𝐿,𝑙,𝑦   𝑚,𝑀,𝑧   𝑅,𝑟,𝑤   𝑆,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑡,𝑚,𝑠,𝑟,𝑙)   𝐴(𝑦,𝑤,𝑟,𝑙)   𝐵(𝑧,𝑡,𝑚,𝑠)   𝑅(𝑦,𝑧,𝑡,𝑚,𝑠,𝑙)   𝑆(𝑦,𝑧,𝑤,𝑚,𝑟,𝑙)   𝐿(𝑧,𝑤,𝑡,𝑚,𝑠,𝑟)   𝑀(𝑦,𝑤,𝑡,𝑠,𝑟,𝑙)

Proof of Theorem addsunif
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsunif.1 . . 3 (𝜑𝐿 <<s 𝑅)
2 addsunif.2 . . 3 (𝜑𝑀 <<s 𝑆)
3 addsunif.3 . . 3 (𝜑𝐴 = (𝐿 |s 𝑅))
4 addsunif.4 . . 3 (𝜑𝐵 = (𝑀 |s 𝑆))
51, 2, 3, 4addsuniflem 27915 . 2 (𝜑 → (𝐴 +s 𝐵) = (({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )})))
6 oveq1 7397 . . . . . . . 8 (𝑙 = 𝑏 → (𝑙 +s 𝐵) = (𝑏 +s 𝐵))
76eqeq2d 2741 . . . . . . 7 (𝑙 = 𝑏 → (𝑦 = (𝑙 +s 𝐵) ↔ 𝑦 = (𝑏 +s 𝐵)))
87cbvrexvw 3217 . . . . . 6 (∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏𝐿 𝑦 = (𝑏 +s 𝐵))
9 eqeq1 2734 . . . . . . 7 (𝑦 = 𝑎 → (𝑦 = (𝑏 +s 𝐵) ↔ 𝑎 = (𝑏 +s 𝐵)))
109rexbidv 3158 . . . . . 6 (𝑦 = 𝑎 → (∃𝑏𝐿 𝑦 = (𝑏 +s 𝐵) ↔ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)))
118, 10bitrid 283 . . . . 5 (𝑦 = 𝑎 → (∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)))
1211cbvabv 2800 . . . 4 {𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} = {𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)}
13 oveq2 7398 . . . . . . . 8 (𝑚 = 𝑑 → (𝐴 +s 𝑚) = (𝐴 +s 𝑑))
1413eqeq2d 2741 . . . . . . 7 (𝑚 = 𝑑 → (𝑧 = (𝐴 +s 𝑚) ↔ 𝑧 = (𝐴 +s 𝑑)))
1514cbvrexvw 3217 . . . . . 6 (∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑𝑀 𝑧 = (𝐴 +s 𝑑))
16 eqeq1 2734 . . . . . . 7 (𝑧 = 𝑐 → (𝑧 = (𝐴 +s 𝑑) ↔ 𝑐 = (𝐴 +s 𝑑)))
1716rexbidv 3158 . . . . . 6 (𝑧 = 𝑐 → (∃𝑑𝑀 𝑧 = (𝐴 +s 𝑑) ↔ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)))
1815, 17bitrid 283 . . . . 5 (𝑧 = 𝑐 → (∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)))
1918cbvabv 2800 . . . 4 {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)} = {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}
2012, 19uneq12i 4132 . . 3 ({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) = ({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)})
21 oveq1 7397 . . . . . . . 8 (𝑟 = 𝑓 → (𝑟 +s 𝐵) = (𝑓 +s 𝐵))
2221eqeq2d 2741 . . . . . . 7 (𝑟 = 𝑓 → (𝑤 = (𝑟 +s 𝐵) ↔ 𝑤 = (𝑓 +s 𝐵)))
2322cbvrexvw 3217 . . . . . 6 (∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓𝑅 𝑤 = (𝑓 +s 𝐵))
24 eqeq1 2734 . . . . . . 7 (𝑤 = 𝑒 → (𝑤 = (𝑓 +s 𝐵) ↔ 𝑒 = (𝑓 +s 𝐵)))
2524rexbidv 3158 . . . . . 6 (𝑤 = 𝑒 → (∃𝑓𝑅 𝑤 = (𝑓 +s 𝐵) ↔ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)))
2623, 25bitrid 283 . . . . 5 (𝑤 = 𝑒 → (∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)))
2726cbvabv 2800 . . . 4 {𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} = {𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)}
28 oveq2 7398 . . . . . . . 8 (𝑠 = → (𝐴 +s 𝑠) = (𝐴 +s ))
2928eqeq2d 2741 . . . . . . 7 (𝑠 = → (𝑡 = (𝐴 +s 𝑠) ↔ 𝑡 = (𝐴 +s )))
3029cbvrexvw 3217 . . . . . 6 (∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃𝑆 𝑡 = (𝐴 +s ))
31 eqeq1 2734 . . . . . . 7 (𝑡 = 𝑔 → (𝑡 = (𝐴 +s ) ↔ 𝑔 = (𝐴 +s )))
3231rexbidv 3158 . . . . . 6 (𝑡 = 𝑔 → (∃𝑆 𝑡 = (𝐴 +s ) ↔ ∃𝑆 𝑔 = (𝐴 +s )))
3330, 32bitrid 283 . . . . 5 (𝑡 = 𝑔 → (∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃𝑆 𝑔 = (𝐴 +s )))
3433cbvabv 2800 . . . 4 {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)} = {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )}
3527, 34uneq12i 4132 . . 3 ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)}) = ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )})
3620, 35oveq12i 7402 . 2 (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})) = (({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )}))
375, 36eqtr4di 2783 1 (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {cab 2708  wrex 3054  cun 3915   class class class wbr 5110  (class class class)co 7390   <<s csslt 27699   |s cscut 27701   +s cadds 27873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec2 27863  df-adds 27874
This theorem is referenced by:  addsasslem1  27917  addsasslem2  27918  negsid  27954  addsdilem2  28062  onaddscl  28181  n0scut  28233  1p1e2s  28309  twocut  28316  halfcut  28340  readdscl  28357
  Copyright terms: Public domain W3C validator