Step | Hyp | Ref
| Expression |
1 | | addsunif.1 |
. . 3
⊢ (𝜑 → 𝐿 <<s 𝑅) |
2 | | addsunif.2 |
. . 3
⊢ (𝜑 → 𝑀 <<s 𝑆) |
3 | | addsunif.3 |
. . 3
⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) |
4 | | addsunif.4 |
. . 3
⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) |
5 | 1, 2, 3, 4 | addsuniflem 27484 |
. 2
⊢ (𝜑 → (𝐴 +s 𝐵) = (({𝑎 ∣ ∃𝑏 ∈ 𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ 𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓 ∈ 𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃ℎ ∈ 𝑆 𝑔 = (𝐴 +s ℎ)}))) |
6 | | oveq1 7416 |
. . . . . . . 8
⊢ (𝑙 = 𝑏 → (𝑙 +s 𝐵) = (𝑏 +s 𝐵)) |
7 | 6 | eqeq2d 2744 |
. . . . . . 7
⊢ (𝑙 = 𝑏 → (𝑦 = (𝑙 +s 𝐵) ↔ 𝑦 = (𝑏 +s 𝐵))) |
8 | 7 | cbvrexvw 3236 |
. . . . . 6
⊢
(∃𝑙 ∈
𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏 ∈ 𝐿 𝑦 = (𝑏 +s 𝐵)) |
9 | | eqeq1 2737 |
. . . . . . 7
⊢ (𝑦 = 𝑎 → (𝑦 = (𝑏 +s 𝐵) ↔ 𝑎 = (𝑏 +s 𝐵))) |
10 | 9 | rexbidv 3179 |
. . . . . 6
⊢ (𝑦 = 𝑎 → (∃𝑏 ∈ 𝐿 𝑦 = (𝑏 +s 𝐵) ↔ ∃𝑏 ∈ 𝐿 𝑎 = (𝑏 +s 𝐵))) |
11 | 8, 10 | bitrid 283 |
. . . . 5
⊢ (𝑦 = 𝑎 → (∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏 ∈ 𝐿 𝑎 = (𝑏 +s 𝐵))) |
12 | 11 | cbvabv 2806 |
. . . 4
⊢ {𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} = {𝑎 ∣ ∃𝑏 ∈ 𝐿 𝑎 = (𝑏 +s 𝐵)} |
13 | | oveq2 7417 |
. . . . . . . 8
⊢ (𝑚 = 𝑑 → (𝐴 +s 𝑚) = (𝐴 +s 𝑑)) |
14 | 13 | eqeq2d 2744 |
. . . . . . 7
⊢ (𝑚 = 𝑑 → (𝑧 = (𝐴 +s 𝑚) ↔ 𝑧 = (𝐴 +s 𝑑))) |
15 | 14 | cbvrexvw 3236 |
. . . . . 6
⊢
(∃𝑚 ∈
𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑 ∈ 𝑀 𝑧 = (𝐴 +s 𝑑)) |
16 | | eqeq1 2737 |
. . . . . . 7
⊢ (𝑧 = 𝑐 → (𝑧 = (𝐴 +s 𝑑) ↔ 𝑐 = (𝐴 +s 𝑑))) |
17 | 16 | rexbidv 3179 |
. . . . . 6
⊢ (𝑧 = 𝑐 → (∃𝑑 ∈ 𝑀 𝑧 = (𝐴 +s 𝑑) ↔ ∃𝑑 ∈ 𝑀 𝑐 = (𝐴 +s 𝑑))) |
18 | 15, 17 | bitrid 283 |
. . . . 5
⊢ (𝑧 = 𝑐 → (∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑 ∈ 𝑀 𝑐 = (𝐴 +s 𝑑))) |
19 | 18 | cbvabv 2806 |
. . . 4
⊢ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)} = {𝑐 ∣ ∃𝑑 ∈ 𝑀 𝑐 = (𝐴 +s 𝑑)} |
20 | 12, 19 | uneq12i 4162 |
. . 3
⊢ ({𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)}) = ({𝑎 ∣ ∃𝑏 ∈ 𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ 𝑀 𝑐 = (𝐴 +s 𝑑)}) |
21 | | oveq1 7416 |
. . . . . . . 8
⊢ (𝑟 = 𝑓 → (𝑟 +s 𝐵) = (𝑓 +s 𝐵)) |
22 | 21 | eqeq2d 2744 |
. . . . . . 7
⊢ (𝑟 = 𝑓 → (𝑤 = (𝑟 +s 𝐵) ↔ 𝑤 = (𝑓 +s 𝐵))) |
23 | 22 | cbvrexvw 3236 |
. . . . . 6
⊢
(∃𝑟 ∈
𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓 ∈ 𝑅 𝑤 = (𝑓 +s 𝐵)) |
24 | | eqeq1 2737 |
. . . . . . 7
⊢ (𝑤 = 𝑒 → (𝑤 = (𝑓 +s 𝐵) ↔ 𝑒 = (𝑓 +s 𝐵))) |
25 | 24 | rexbidv 3179 |
. . . . . 6
⊢ (𝑤 = 𝑒 → (∃𝑓 ∈ 𝑅 𝑤 = (𝑓 +s 𝐵) ↔ ∃𝑓 ∈ 𝑅 𝑒 = (𝑓 +s 𝐵))) |
26 | 23, 25 | bitrid 283 |
. . . . 5
⊢ (𝑤 = 𝑒 → (∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓 ∈ 𝑅 𝑒 = (𝑓 +s 𝐵))) |
27 | 26 | cbvabv 2806 |
. . . 4
⊢ {𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} = {𝑒 ∣ ∃𝑓 ∈ 𝑅 𝑒 = (𝑓 +s 𝐵)} |
28 | | oveq2 7417 |
. . . . . . . 8
⊢ (𝑠 = ℎ → (𝐴 +s 𝑠) = (𝐴 +s ℎ)) |
29 | 28 | eqeq2d 2744 |
. . . . . . 7
⊢ (𝑠 = ℎ → (𝑡 = (𝐴 +s 𝑠) ↔ 𝑡 = (𝐴 +s ℎ))) |
30 | 29 | cbvrexvw 3236 |
. . . . . 6
⊢
(∃𝑠 ∈
𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃ℎ ∈ 𝑆 𝑡 = (𝐴 +s ℎ)) |
31 | | eqeq1 2737 |
. . . . . . 7
⊢ (𝑡 = 𝑔 → (𝑡 = (𝐴 +s ℎ) ↔ 𝑔 = (𝐴 +s ℎ))) |
32 | 31 | rexbidv 3179 |
. . . . . 6
⊢ (𝑡 = 𝑔 → (∃ℎ ∈ 𝑆 𝑡 = (𝐴 +s ℎ) ↔ ∃ℎ ∈ 𝑆 𝑔 = (𝐴 +s ℎ))) |
33 | 30, 32 | bitrid 283 |
. . . . 5
⊢ (𝑡 = 𝑔 → (∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃ℎ ∈ 𝑆 𝑔 = (𝐴 +s ℎ))) |
34 | 33 | cbvabv 2806 |
. . . 4
⊢ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)} = {𝑔 ∣ ∃ℎ ∈ 𝑆 𝑔 = (𝐴 +s ℎ)} |
35 | 27, 34 | uneq12i 4162 |
. . 3
⊢ ({𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)}) = ({𝑒 ∣ ∃𝑓 ∈ 𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃ℎ ∈ 𝑆 𝑔 = (𝐴 +s ℎ)}) |
36 | 20, 35 | oveq12i 7421 |
. 2
⊢ (({𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)})) = (({𝑎 ∣ ∃𝑏 ∈ 𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑 ∈ 𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓 ∈ 𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃ℎ ∈ 𝑆 𝑔 = (𝐴 +s ℎ)})) |
37 | 5, 36 | eqtr4di 2791 |
1
⊢ (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)}))) |