MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsunif Structured version   Visualization version   GIF version

Theorem addsunif 27966
Description: Uniformity theorem for surreal addition. This theorem states that we can use any cuts that define 𝐴 and 𝐵 in the definition of surreal addition. Theorem 3.2 of [Gonshor] p. 15. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsunif.1 (𝜑𝐿 <<s 𝑅)
addsunif.2 (𝜑𝑀 <<s 𝑆)
addsunif.3 (𝜑𝐴 = (𝐿 |s 𝑅))
addsunif.4 (𝜑𝐵 = (𝑀 |s 𝑆))
Assertion
Ref Expression
addsunif (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})))
Distinct variable groups:   𝐴,𝑚   𝐴,𝑠,𝑡   𝑧,𝐴   𝐵,𝑙   𝐵,𝑟,𝑤   𝑦,𝐵   𝐿,𝑙,𝑦   𝑚,𝑀,𝑧   𝑅,𝑟,𝑤   𝑆,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑡,𝑚,𝑠,𝑟,𝑙)   𝐴(𝑦,𝑤,𝑟,𝑙)   𝐵(𝑧,𝑡,𝑚,𝑠)   𝑅(𝑦,𝑧,𝑡,𝑚,𝑠,𝑙)   𝑆(𝑦,𝑧,𝑤,𝑚,𝑟,𝑙)   𝐿(𝑧,𝑤,𝑡,𝑚,𝑠,𝑟)   𝑀(𝑦,𝑤,𝑡,𝑠,𝑟,𝑙)

Proof of Theorem addsunif
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsunif.1 . . 3 (𝜑𝐿 <<s 𝑅)
2 addsunif.2 . . 3 (𝜑𝑀 <<s 𝑆)
3 addsunif.3 . . 3 (𝜑𝐴 = (𝐿 |s 𝑅))
4 addsunif.4 . . 3 (𝜑𝐵 = (𝑀 |s 𝑆))
51, 2, 3, 4addsuniflem 27965 . 2 (𝜑 → (𝐴 +s 𝐵) = (({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )})))
6 oveq1 7417 . . . . . . . 8 (𝑙 = 𝑏 → (𝑙 +s 𝐵) = (𝑏 +s 𝐵))
76eqeq2d 2747 . . . . . . 7 (𝑙 = 𝑏 → (𝑦 = (𝑙 +s 𝐵) ↔ 𝑦 = (𝑏 +s 𝐵)))
87cbvrexvw 3225 . . . . . 6 (∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏𝐿 𝑦 = (𝑏 +s 𝐵))
9 eqeq1 2740 . . . . . . 7 (𝑦 = 𝑎 → (𝑦 = (𝑏 +s 𝐵) ↔ 𝑎 = (𝑏 +s 𝐵)))
109rexbidv 3165 . . . . . 6 (𝑦 = 𝑎 → (∃𝑏𝐿 𝑦 = (𝑏 +s 𝐵) ↔ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)))
118, 10bitrid 283 . . . . 5 (𝑦 = 𝑎 → (∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵) ↔ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)))
1211cbvabv 2806 . . . 4 {𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} = {𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)}
13 oveq2 7418 . . . . . . . 8 (𝑚 = 𝑑 → (𝐴 +s 𝑚) = (𝐴 +s 𝑑))
1413eqeq2d 2747 . . . . . . 7 (𝑚 = 𝑑 → (𝑧 = (𝐴 +s 𝑚) ↔ 𝑧 = (𝐴 +s 𝑑)))
1514cbvrexvw 3225 . . . . . 6 (∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑𝑀 𝑧 = (𝐴 +s 𝑑))
16 eqeq1 2740 . . . . . . 7 (𝑧 = 𝑐 → (𝑧 = (𝐴 +s 𝑑) ↔ 𝑐 = (𝐴 +s 𝑑)))
1716rexbidv 3165 . . . . . 6 (𝑧 = 𝑐 → (∃𝑑𝑀 𝑧 = (𝐴 +s 𝑑) ↔ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)))
1815, 17bitrid 283 . . . . 5 (𝑧 = 𝑐 → (∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚) ↔ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)))
1918cbvabv 2806 . . . 4 {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)} = {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}
2012, 19uneq12i 4146 . . 3 ({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) = ({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)})
21 oveq1 7417 . . . . . . . 8 (𝑟 = 𝑓 → (𝑟 +s 𝐵) = (𝑓 +s 𝐵))
2221eqeq2d 2747 . . . . . . 7 (𝑟 = 𝑓 → (𝑤 = (𝑟 +s 𝐵) ↔ 𝑤 = (𝑓 +s 𝐵)))
2322cbvrexvw 3225 . . . . . 6 (∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓𝑅 𝑤 = (𝑓 +s 𝐵))
24 eqeq1 2740 . . . . . . 7 (𝑤 = 𝑒 → (𝑤 = (𝑓 +s 𝐵) ↔ 𝑒 = (𝑓 +s 𝐵)))
2524rexbidv 3165 . . . . . 6 (𝑤 = 𝑒 → (∃𝑓𝑅 𝑤 = (𝑓 +s 𝐵) ↔ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)))
2623, 25bitrid 283 . . . . 5 (𝑤 = 𝑒 → (∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵) ↔ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)))
2726cbvabv 2806 . . . 4 {𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} = {𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)}
28 oveq2 7418 . . . . . . . 8 (𝑠 = → (𝐴 +s 𝑠) = (𝐴 +s ))
2928eqeq2d 2747 . . . . . . 7 (𝑠 = → (𝑡 = (𝐴 +s 𝑠) ↔ 𝑡 = (𝐴 +s )))
3029cbvrexvw 3225 . . . . . 6 (∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃𝑆 𝑡 = (𝐴 +s ))
31 eqeq1 2740 . . . . . . 7 (𝑡 = 𝑔 → (𝑡 = (𝐴 +s ) ↔ 𝑔 = (𝐴 +s )))
3231rexbidv 3165 . . . . . 6 (𝑡 = 𝑔 → (∃𝑆 𝑡 = (𝐴 +s ) ↔ ∃𝑆 𝑔 = (𝐴 +s )))
3330, 32bitrid 283 . . . . 5 (𝑡 = 𝑔 → (∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠) ↔ ∃𝑆 𝑔 = (𝐴 +s )))
3433cbvabv 2806 . . . 4 {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)} = {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )}
3527, 34uneq12i 4146 . . 3 ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)}) = ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )})
3620, 35oveq12i 7422 . 2 (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})) = (({𝑎 ∣ ∃𝑏𝐿 𝑎 = (𝑏 +s 𝐵)} ∪ {𝑐 ∣ ∃𝑑𝑀 𝑐 = (𝐴 +s 𝑑)}) |s ({𝑒 ∣ ∃𝑓𝑅 𝑒 = (𝑓 +s 𝐵)} ∪ {𝑔 ∣ ∃𝑆 𝑔 = (𝐴 +s )}))
375, 36eqtr4di 2789 1 (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠𝑆 𝑡 = (𝐴 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {cab 2714  wrex 3061  cun 3929   class class class wbr 5124  (class class class)co 7410   <<s csslt 27749   |s cscut 27751   +s cadds 27923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec2 27913  df-adds 27924
This theorem is referenced by:  addsasslem1  27967  addsasslem2  27968  negsid  28004  addsdilem2  28112  onaddscl  28231  n0scut  28283  1p1e2s  28359  twocut  28366  halfcut  28390  readdscl  28407
  Copyright terms: Public domain W3C validator