Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypos Structured version   Visualization version   GIF version

Theorem rmxypos 40766
Description: For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
rmxypos ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))

Proof of Theorem rmxypos
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7279 . . . . . 6 (𝑎 = 0 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 0))
21breq2d 5091 . . . . 5 (𝑎 = 0 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 0)))
3 oveq2 7279 . . . . . 6 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
43breq2d 5091 . . . . 5 (𝑎 = 0 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 0)))
52, 4anbi12d 631 . . . 4 (𝑎 = 0 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0))))
65imbi2d 341 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0)))))
7 oveq2 7279 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
87breq2d 5091 . . . . 5 (𝑎 = 𝑏 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 𝑏)))
9 oveq2 7279 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
109breq2d 5091 . . . . 5 (𝑎 = 𝑏 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 𝑏)))
118, 10anbi12d 631 . . . 4 (𝑎 = 𝑏 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))))
1211imbi2d 341 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))))
13 oveq2 7279 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
1413breq2d 5091 . . . . 5 (𝑎 = (𝑏 + 1) → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm (𝑏 + 1))))
15 oveq2 7279 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
1615breq2d 5091 . . . . 5 (𝑎 = (𝑏 + 1) → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm (𝑏 + 1))))
1714, 16anbi12d 631 . . . 4 (𝑎 = (𝑏 + 1) → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1)))))
1817imbi2d 341 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
19 oveq2 7279 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
2019breq2d 5091 . . . . 5 (𝑎 = 𝑁 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 𝑁)))
21 oveq2 7279 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
2221breq2d 5091 . . . . 5 (𝑎 = 𝑁 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 𝑁)))
2320, 22anbi12d 631 . . . 4 (𝑎 = 𝑁 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))))
2423imbi2d 341 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))))
25 0lt1 11497 . . . . 5 0 < 1
26 rmx0 40744 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) = 1)
2725, 26breqtrrid 5117 . . . 4 (𝐴 ∈ (ℤ‘2) → 0 < (𝐴 Xrm 0))
28 0le0 12074 . . . . 5 0 ≤ 0
29 rmy0 40748 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
3028, 29breqtrrid 5117 . . . 4 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 Yrm 0))
3127, 30jca 512 . . 3 (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0)))
32 simp2 1136 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝐴 ∈ (ℤ‘2))
33 nn0z 12343 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
34333ad2ant1 1132 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝑏 ∈ ℤ)
35 frmx 40732 . . . . . . . . . . . 12 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3635fovcl 7396 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
3732, 34, 36syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm 𝑏) ∈ ℕ0)
3837nn0red 12294 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm 𝑏) ∈ ℝ)
39 eluzelre 12592 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
40393ad2ant2 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝐴 ∈ ℝ)
4138, 40remulcld 11006 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴 Xrm 𝑏) · 𝐴) ∈ ℝ)
42 rmspecpos 40735 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
4342rpred 12771 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ)
44433ad2ant2 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴↑2) − 1) ∈ ℝ)
45 frmy 40733 . . . . . . . . . . . 12 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4645fovcl 7396 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
4732, 34, 46syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm 𝑏) ∈ ℤ)
4847zred 12425 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm 𝑏) ∈ ℝ)
4944, 48remulcld 11006 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ∈ ℝ)
50 simp3l 1200 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (𝐴 Xrm 𝑏))
51 eluz2nn 12623 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
5251nngt0d 12022 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < 𝐴)
53523ad2ant2 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < 𝐴)
5438, 40, 50, 53mulgt0d 11130 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < ((𝐴 Xrm 𝑏) · 𝐴))
5542rpge0d 12775 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ ((𝐴↑2) − 1))
56553ad2ant2 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ ((𝐴↑2) − 1))
57 simp3r 1201 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Yrm 𝑏))
5844, 48, 56, 57mulge0d 11552 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))
5941, 49, 54, 58addgtge0d 11549 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
60 rmxp1 40751 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
6132, 34, 60syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
6259, 61breqtrrd 5107 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (𝐴 Xrm (𝑏 + 1)))
6348, 40remulcld 11006 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℝ)
64 eluzge2nn0 12626 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
6564nn0ge0d 12296 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
66653ad2ant2 1133 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ 𝐴)
6748, 40, 57, 66mulge0d 11552 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ ((𝐴 Yrm 𝑏) · 𝐴))
6837nn0ge0d 12296 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Xrm 𝑏))
6963, 38, 67, 68addge0d 11551 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
70 rmyp1 40752 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
7132, 34, 70syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
7269, 71breqtrrd 5107 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Yrm (𝑏 + 1)))
7362, 72jca 512 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))
74733exp 1118 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
7574a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
766, 12, 18, 24, 31, 75nn0ind 12415 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))))
7776impcom 408 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6432  (class class class)co 7271  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877   < clt 11010  cle 11011  cmin 11205  2c2 12028  0cn0 12233  cz 12319  cuz 12581  cexp 13780   Xrm crmx 40719   Yrm crmy 40720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-omul 8293  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-acn 9701  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-sin 15777  df-cos 15778  df-pi 15780  df-dvds 15962  df-gcd 16200  df-numer 16437  df-denom 16438  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029  df-log 25710  df-squarenn 40660  df-pell1qr 40661  df-pell14qr 40662  df-pell1234qr 40663  df-pellfund 40664  df-rmx 40721  df-rmy 40722
This theorem is referenced by:  ltrmynn0  40767  ltrmxnn0  40768  rmxnn  40770  rmynn0  40776  rmyabs  40777  jm2.24nn  40778  jm2.17b  40780
  Copyright terms: Public domain W3C validator