Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypos Structured version   Visualization version   GIF version

Theorem rmxypos 42971
Description: For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
rmxypos ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))

Proof of Theorem rmxypos
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . . 6 (𝑎 = 0 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 0))
21breq2d 5131 . . . . 5 (𝑎 = 0 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 0)))
3 oveq2 7413 . . . . . 6 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
43breq2d 5131 . . . . 5 (𝑎 = 0 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 0)))
52, 4anbi12d 632 . . . 4 (𝑎 = 0 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0))))
65imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0)))))
7 oveq2 7413 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
87breq2d 5131 . . . . 5 (𝑎 = 𝑏 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 𝑏)))
9 oveq2 7413 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
109breq2d 5131 . . . . 5 (𝑎 = 𝑏 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 𝑏)))
118, 10anbi12d 632 . . . 4 (𝑎 = 𝑏 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))))
1211imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))))
13 oveq2 7413 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
1413breq2d 5131 . . . . 5 (𝑎 = (𝑏 + 1) → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm (𝑏 + 1))))
15 oveq2 7413 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
1615breq2d 5131 . . . . 5 (𝑎 = (𝑏 + 1) → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm (𝑏 + 1))))
1714, 16anbi12d 632 . . . 4 (𝑎 = (𝑏 + 1) → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1)))))
1817imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
19 oveq2 7413 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
2019breq2d 5131 . . . . 5 (𝑎 = 𝑁 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 𝑁)))
21 oveq2 7413 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
2221breq2d 5131 . . . . 5 (𝑎 = 𝑁 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 𝑁)))
2320, 22anbi12d 632 . . . 4 (𝑎 = 𝑁 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))))
2423imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))))
25 0lt1 11759 . . . . 5 0 < 1
26 rmx0 42949 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) = 1)
2725, 26breqtrrid 5157 . . . 4 (𝐴 ∈ (ℤ‘2) → 0 < (𝐴 Xrm 0))
28 0le0 12341 . . . . 5 0 ≤ 0
29 rmy0 42953 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
3028, 29breqtrrid 5157 . . . 4 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 Yrm 0))
3127, 30jca 511 . . 3 (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0)))
32 simp2 1137 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝐴 ∈ (ℤ‘2))
33 nn0z 12613 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
34333ad2ant1 1133 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝑏 ∈ ℤ)
35 frmx 42937 . . . . . . . . . . . 12 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3635fovcl 7535 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
3732, 34, 36syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm 𝑏) ∈ ℕ0)
3837nn0red 12563 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm 𝑏) ∈ ℝ)
39 eluzelre 12863 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
40393ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝐴 ∈ ℝ)
4138, 40remulcld 11265 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴 Xrm 𝑏) · 𝐴) ∈ ℝ)
42 rmspecpos 42940 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
4342rpred 13051 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ)
44433ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴↑2) − 1) ∈ ℝ)
45 frmy 42938 . . . . . . . . . . . 12 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4645fovcl 7535 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
4732, 34, 46syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm 𝑏) ∈ ℤ)
4847zred 12697 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm 𝑏) ∈ ℝ)
4944, 48remulcld 11265 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ∈ ℝ)
50 simp3l 1202 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (𝐴 Xrm 𝑏))
51 eluz2nn 12898 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
5251nngt0d 12289 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < 𝐴)
53523ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < 𝐴)
5438, 40, 50, 53mulgt0d 11390 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < ((𝐴 Xrm 𝑏) · 𝐴))
5542rpge0d 13055 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ ((𝐴↑2) − 1))
56553ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ ((𝐴↑2) − 1))
57 simp3r 1203 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Yrm 𝑏))
5844, 48, 56, 57mulge0d 11814 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))
5941, 49, 54, 58addgtge0d 11811 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
60 rmxp1 42956 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
6132, 34, 60syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
6259, 61breqtrrd 5147 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (𝐴 Xrm (𝑏 + 1)))
6348, 40remulcld 11265 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℝ)
64 eluzge2nn0 12903 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
6564nn0ge0d 12565 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
66653ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ 𝐴)
6748, 40, 57, 66mulge0d 11814 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ ((𝐴 Yrm 𝑏) · 𝐴))
6837nn0ge0d 12565 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Xrm 𝑏))
6963, 38, 67, 68addge0d 11813 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
70 rmyp1 42957 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
7132, 34, 70syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
7269, 71breqtrrd 5147 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Yrm (𝑏 + 1)))
7362, 72jca 511 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))
74733exp 1119 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
7574a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
766, 12, 18, 24, 31, 75nn0ind 12688 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))))
7776impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466  2c2 12295  0cn0 12501  cz 12588  cuz 12852  cexp 14079   Xrm crmx 42923   Yrm crmy 42924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-numer 16754  df-denom 16755  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-squarenn 42864  df-pell1qr 42865  df-pell14qr 42866  df-pell1234qr 42867  df-pellfund 42868  df-rmx 42925  df-rmy 42926
This theorem is referenced by:  ltrmynn0  42972  ltrmxnn0  42973  rmxnn  42975  rmynn0  42981  rmyabs  42982  jm2.24nn  42983  jm2.17b  42985
  Copyright terms: Public domain W3C validator