Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypos Structured version   Visualization version   GIF version

Theorem rmxypos 42940
Description: For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
rmxypos ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))

Proof of Theorem rmxypos
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . . 6 (𝑎 = 0 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 0))
21breq2d 5107 . . . . 5 (𝑎 = 0 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 0)))
3 oveq2 7361 . . . . . 6 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
43breq2d 5107 . . . . 5 (𝑎 = 0 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 0)))
52, 4anbi12d 632 . . . 4 (𝑎 = 0 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0))))
65imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0)))))
7 oveq2 7361 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
87breq2d 5107 . . . . 5 (𝑎 = 𝑏 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 𝑏)))
9 oveq2 7361 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
109breq2d 5107 . . . . 5 (𝑎 = 𝑏 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 𝑏)))
118, 10anbi12d 632 . . . 4 (𝑎 = 𝑏 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))))
1211imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))))
13 oveq2 7361 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
1413breq2d 5107 . . . . 5 (𝑎 = (𝑏 + 1) → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm (𝑏 + 1))))
15 oveq2 7361 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
1615breq2d 5107 . . . . 5 (𝑎 = (𝑏 + 1) → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm (𝑏 + 1))))
1714, 16anbi12d 632 . . . 4 (𝑎 = (𝑏 + 1) → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1)))))
1817imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
19 oveq2 7361 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
2019breq2d 5107 . . . . 5 (𝑎 = 𝑁 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 𝑁)))
21 oveq2 7361 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
2221breq2d 5107 . . . . 5 (𝑎 = 𝑁 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 𝑁)))
2320, 22anbi12d 632 . . . 4 (𝑎 = 𝑁 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))))
2423imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))))
25 0lt1 11661 . . . . 5 0 < 1
26 rmx0 42918 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) = 1)
2725, 26breqtrrid 5133 . . . 4 (𝐴 ∈ (ℤ‘2) → 0 < (𝐴 Xrm 0))
28 0le0 12248 . . . . 5 0 ≤ 0
29 rmy0 42922 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
3028, 29breqtrrid 5133 . . . 4 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 Yrm 0))
3127, 30jca 511 . . 3 (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0)))
32 simp2 1137 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝐴 ∈ (ℤ‘2))
33 nn0z 12515 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
34333ad2ant1 1133 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝑏 ∈ ℤ)
35 frmx 42906 . . . . . . . . . . . 12 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3635fovcl 7481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
3732, 34, 36syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm 𝑏) ∈ ℕ0)
3837nn0red 12465 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm 𝑏) ∈ ℝ)
39 eluzelre 12765 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
40393ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝐴 ∈ ℝ)
4138, 40remulcld 11164 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴 Xrm 𝑏) · 𝐴) ∈ ℝ)
42 rmspecpos 42909 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
4342rpred 12956 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ)
44433ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴↑2) − 1) ∈ ℝ)
45 frmy 42907 . . . . . . . . . . . 12 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4645fovcl 7481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
4732, 34, 46syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm 𝑏) ∈ ℤ)
4847zred 12599 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm 𝑏) ∈ ℝ)
4944, 48remulcld 11164 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ∈ ℝ)
50 simp3l 1202 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (𝐴 Xrm 𝑏))
51 eluz2nn 12808 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
5251nngt0d 12196 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < 𝐴)
53523ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < 𝐴)
5438, 40, 50, 53mulgt0d 11290 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < ((𝐴 Xrm 𝑏) · 𝐴))
5542rpge0d 12960 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ ((𝐴↑2) − 1))
56553ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ ((𝐴↑2) − 1))
57 simp3r 1203 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Yrm 𝑏))
5844, 48, 56, 57mulge0d 11716 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))
5941, 49, 54, 58addgtge0d 11713 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
60 rmxp1 42925 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
6132, 34, 60syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
6259, 61breqtrrd 5123 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (𝐴 Xrm (𝑏 + 1)))
6348, 40remulcld 11164 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℝ)
64 eluzge2nn0 12812 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
6564nn0ge0d 12467 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
66653ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ 𝐴)
6748, 40, 57, 66mulge0d 11716 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ ((𝐴 Yrm 𝑏) · 𝐴))
6837nn0ge0d 12467 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Xrm 𝑏))
6963, 38, 67, 68addge0d 11715 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
70 rmyp1 42926 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
7132, 34, 70syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
7269, 71breqtrrd 5123 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Yrm (𝑏 + 1)))
7362, 72jca 511 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))
74733exp 1119 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
7574a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
766, 12, 18, 24, 31, 75nn0ind 12590 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))))
7776impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11366  2c2 12202  0cn0 12403  cz 12490  cuz 12754  cexp 13987   Xrm crmx 42893   Yrm crmy 42894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-dvds 16183  df-gcd 16425  df-numer 16665  df-denom 16666  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785  df-log 26482  df-squarenn 42834  df-pell1qr 42835  df-pell14qr 42836  df-pell1234qr 42837  df-pellfund 42838  df-rmx 42895  df-rmy 42896
This theorem is referenced by:  ltrmynn0  42941  ltrmxnn0  42942  rmxnn  42944  rmynn0  42950  rmyabs  42951  jm2.24nn  42952  jm2.17b  42954
  Copyright terms: Public domain W3C validator