Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypos Structured version   Visualization version   GIF version

Theorem rmxypos 42980
Description: For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
rmxypos ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))

Proof of Theorem rmxypos
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . . . . 6 (𝑎 = 0 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 0))
21breq2d 5098 . . . . 5 (𝑎 = 0 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 0)))
3 oveq2 7349 . . . . . 6 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
43breq2d 5098 . . . . 5 (𝑎 = 0 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 0)))
52, 4anbi12d 632 . . . 4 (𝑎 = 0 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0))))
65imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0)))))
7 oveq2 7349 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
87breq2d 5098 . . . . 5 (𝑎 = 𝑏 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 𝑏)))
9 oveq2 7349 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
109breq2d 5098 . . . . 5 (𝑎 = 𝑏 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 𝑏)))
118, 10anbi12d 632 . . . 4 (𝑎 = 𝑏 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))))
1211imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))))
13 oveq2 7349 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
1413breq2d 5098 . . . . 5 (𝑎 = (𝑏 + 1) → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm (𝑏 + 1))))
15 oveq2 7349 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
1615breq2d 5098 . . . . 5 (𝑎 = (𝑏 + 1) → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm (𝑏 + 1))))
1714, 16anbi12d 632 . . . 4 (𝑎 = (𝑏 + 1) → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1)))))
1817imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
19 oveq2 7349 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
2019breq2d 5098 . . . . 5 (𝑎 = 𝑁 → (0 < (𝐴 Xrm 𝑎) ↔ 0 < (𝐴 Xrm 𝑁)))
21 oveq2 7349 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
2221breq2d 5098 . . . . 5 (𝑎 = 𝑁 → (0 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 𝑁)))
2320, 22anbi12d 632 . . . 4 (𝑎 = 𝑁 → ((0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)) ↔ (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))))
2423imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎))) ↔ (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))))
25 0lt1 11634 . . . . 5 0 < 1
26 rmx0 42958 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 0) = 1)
2725, 26breqtrrid 5124 . . . 4 (𝐴 ∈ (ℤ‘2) → 0 < (𝐴 Xrm 0))
28 0le0 12221 . . . . 5 0 ≤ 0
29 rmy0 42962 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
3028, 29breqtrrid 5124 . . . 4 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 Yrm 0))
3127, 30jca 511 . . 3 (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 0) ∧ 0 ≤ (𝐴 Yrm 0)))
32 simp2 1137 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝐴 ∈ (ℤ‘2))
33 nn0z 12488 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
34333ad2ant1 1133 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝑏 ∈ ℤ)
35 frmx 42946 . . . . . . . . . . . 12 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3635fovcl 7469 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
3732, 34, 36syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm 𝑏) ∈ ℕ0)
3837nn0red 12438 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm 𝑏) ∈ ℝ)
39 eluzelre 12738 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
40393ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 𝐴 ∈ ℝ)
4138, 40remulcld 11137 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴 Xrm 𝑏) · 𝐴) ∈ ℝ)
42 rmspecpos 42949 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
4342rpred 12929 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ)
44433ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴↑2) − 1) ∈ ℝ)
45 frmy 42947 . . . . . . . . . . . 12 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4645fovcl 7469 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
4732, 34, 46syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm 𝑏) ∈ ℤ)
4847zred 12572 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm 𝑏) ∈ ℝ)
4944, 48remulcld 11137 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ∈ ℝ)
50 simp3l 1202 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (𝐴 Xrm 𝑏))
51 eluz2nn 12781 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
5251nngt0d 12169 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < 𝐴)
53523ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < 𝐴)
5438, 40, 50, 53mulgt0d 11263 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < ((𝐴 Xrm 𝑏) · 𝐴))
5542rpge0d 12933 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ ((𝐴↑2) − 1))
56553ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ ((𝐴↑2) − 1))
57 simp3r 1203 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Yrm 𝑏))
5844, 48, 56, 57mulge0d 11689 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))
5941, 49, 54, 58addgtge0d 11686 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
60 rmxp1 42965 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
6132, 34, 60syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
6259, 61breqtrrd 5114 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 < (𝐴 Xrm (𝑏 + 1)))
6348, 40remulcld 11137 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℝ)
64 eluzge2nn0 12785 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
6564nn0ge0d 12440 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
66653ad2ant2 1134 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ 𝐴)
6748, 40, 57, 66mulge0d 11689 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ ((𝐴 Yrm 𝑏) · 𝐴))
6837nn0ge0d 12440 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Xrm 𝑏))
6963, 38, 67, 68addge0d 11688 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
70 rmyp1 42966 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
7132, 34, 70syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
7269, 71breqtrrd 5114 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → 0 ≤ (𝐴 Yrm (𝑏 + 1)))
7362, 72jca 511 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))
74733exp 1119 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
7574a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) → (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm (𝑏 + 1)) ∧ 0 ≤ (𝐴 Yrm (𝑏 + 1))))))
766, 12, 18, 24, 31, 75nn0ind 12563 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁))))
7776impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑁) ∧ 0 ≤ (𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142  cmin 11339  2c2 12175  0cn0 12376  cz 12463  cuz 12727  cexp 13963   Xrm crmx 42933   Yrm crmy 42934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-dvds 16159  df-gcd 16401  df-numer 16641  df-denom 16642  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-squarenn 42874  df-pell1qr 42875  df-pell14qr 42876  df-pell1234qr 42877  df-pellfund 42878  df-rmx 42935  df-rmy 42936
This theorem is referenced by:  ltrmynn0  42981  ltrmxnn0  42982  rmxnn  42984  rmynn0  42990  rmyabs  42991  jm2.24nn  42992  jm2.17b  42994
  Copyright terms: Public domain W3C validator