![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmygeid | Structured version Visualization version GIF version |
Description: Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
rmygeid | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑎 = 0 → 𝑎 = 0) | |
2 | oveq2 7456 | . . . . 5 ⊢ (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0)) | |
3 | 1, 2 | breq12d 5179 | . . . 4 ⊢ (𝑎 = 0 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 0))) |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑎 = 0 → ((𝐴 ∈ (ℤ≥‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ (𝐴 Yrm 0)))) |
5 | id 22 | . . . . 5 ⊢ (𝑎 = 𝑏 → 𝑎 = 𝑏) | |
6 | oveq2 7456 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏)) | |
7 | 5, 6 | breq12d 5179 | . . . 4 ⊢ (𝑎 = 𝑏 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 𝑏 ≤ (𝐴 Yrm 𝑏))) |
8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ≥‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ≥‘2) → 𝑏 ≤ (𝐴 Yrm 𝑏)))) |
9 | id 22 | . . . . 5 ⊢ (𝑎 = (𝑏 + 1) → 𝑎 = (𝑏 + 1)) | |
10 | oveq2 7456 | . . . . 5 ⊢ (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1))) | |
11 | 9, 10 | breq12d 5179 | . . . 4 ⊢ (𝑎 = (𝑏 + 1) → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))) |
12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ≥‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ≥‘2) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))))) |
13 | id 22 | . . . . 5 ⊢ (𝑎 = 𝑁 → 𝑎 = 𝑁) | |
14 | oveq2 7456 | . . . . 5 ⊢ (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁)) | |
15 | 13, 14 | breq12d 5179 | . . . 4 ⊢ (𝑎 = 𝑁 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 𝑁 ≤ (𝐴 Yrm 𝑁))) |
16 | 15 | imbi2d 340 | . . 3 ⊢ (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ≥‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ≥‘2) → 𝑁 ≤ (𝐴 Yrm 𝑁)))) |
17 | 0le0 12394 | . . . 4 ⊢ 0 ≤ 0 | |
18 | rmy0 42886 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) = 0) | |
19 | 17, 18 | breqtrrid 5204 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ (𝐴 Yrm 0)) |
20 | nn0z 12664 | . . . . . . . . 9 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ) | |
21 | 20 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ∈ ℤ) |
22 | 21 | peano2zd 12750 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ∈ ℤ) |
23 | 22 | zred 12747 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ∈ ℝ) |
24 | simp2 1137 | . . . . . . . . 9 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝐴 ∈ (ℤ≥‘2)) | |
25 | frmy 42871 | . . . . . . . . . 10 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
26 | 25 | fovcl 7578 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ) |
27 | 24, 21, 26 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) ∈ ℤ) |
28 | 27 | peano2zd 12750 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ∈ ℤ) |
29 | 28 | zred 12747 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ∈ ℝ) |
30 | 25 | fovcl 7578 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ) |
31 | 24, 22, 30 | syl2anc 583 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ) |
32 | 31 | zred 12747 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ) |
33 | nn0re 12562 | . . . . . . . 8 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ) | |
34 | 33 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ∈ ℝ) |
35 | 27 | zred 12747 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) ∈ ℝ) |
36 | 1red 11291 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 1 ∈ ℝ) | |
37 | simp3 1138 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ≤ (𝐴 Yrm 𝑏)) | |
38 | 34, 35, 36, 37 | leadd1dd 11904 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ≤ ((𝐴 Yrm 𝑏) + 1)) |
39 | 34 | ltp1d 12225 | . . . . . . . 8 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 < (𝑏 + 1)) |
40 | ltrmy 42909 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ ∧ (𝑏 + 1) ∈ ℤ) → (𝑏 < (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)))) | |
41 | 24, 21, 22, 40 | syl3anc 1371 | . . . . . . . 8 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 < (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)))) |
42 | 39, 41 | mpbid 232 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1))) |
43 | zltp1le 12693 | . . . . . . . 8 ⊢ (((𝐴 Yrm 𝑏) ∈ ℤ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℤ) → ((𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)) ↔ ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1)))) | |
44 | 27, 31, 43 | syl2anc 583 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)) ↔ ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1)))) |
45 | 42, 44 | mpbid 232 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1))) |
46 | 23, 29, 32, 38, 45 | letrd 11447 | . . . . 5 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))) |
47 | 46 | 3exp 1119 | . . . 4 ⊢ (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ≥‘2) → (𝑏 ≤ (𝐴 Yrm 𝑏) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))))) |
48 | 47 | a2d 29 | . . 3 ⊢ (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ≥‘2) → 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 ∈ (ℤ≥‘2) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))))) |
49 | 4, 8, 12, 16, 19, 48 | nn0ind 12738 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ≥‘2) → 𝑁 ≤ (𝐴 Yrm 𝑁))) |
50 | 49 | impcom 407 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ℤ≥cuz 12903 Yrm crmy 42857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-dvds 16303 df-gcd 16541 df-numer 16782 df-denom 16783 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 df-squarenn 42797 df-pell1qr 42798 df-pell14qr 42799 df-pell1234qr 42800 df-pellfund 42801 df-rmx 42858 df-rmy 42859 |
This theorem is referenced by: jm2.27a 42962 jm2.27c 42964 expdiophlem1 42978 |
Copyright terms: Public domain | W3C validator |