Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmygeid Structured version   Visualization version   GIF version

Theorem rmygeid 42952
Description: Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
rmygeid ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁))

Proof of Theorem rmygeid
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑎 = 0 → 𝑎 = 0)
2 oveq2 7438 . . . . 5 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
31, 2breq12d 5160 . . . 4 (𝑎 = 0 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 0)))
43imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 Yrm 0))))
5 id 22 . . . . 5 (𝑎 = 𝑏𝑎 = 𝑏)
6 oveq2 7438 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
75, 6breq12d 5160 . . . 4 (𝑎 = 𝑏 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 𝑏 ≤ (𝐴 Yrm 𝑏)))
87imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → 𝑏 ≤ (𝐴 Yrm 𝑏))))
9 id 22 . . . . 5 (𝑎 = (𝑏 + 1) → 𝑎 = (𝑏 + 1))
10 oveq2 7438 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
119, 10breq12d 5160 . . . 4 (𝑎 = (𝑏 + 1) → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))))
1211imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))))
13 id 22 . . . . 5 (𝑎 = 𝑁𝑎 = 𝑁)
14 oveq2 7438 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
1513, 14breq12d 5160 . . . 4 (𝑎 = 𝑁 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 𝑁 ≤ (𝐴 Yrm 𝑁)))
1615imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → 𝑁 ≤ (𝐴 Yrm 𝑁))))
17 0le0 12364 . . . 4 0 ≤ 0
18 rmy0 42917 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1917, 18breqtrrid 5185 . . 3 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 Yrm 0))
20 nn0z 12635 . . . . . . . . 9 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
21203ad2ant1 1132 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ∈ ℤ)
2221peano2zd 12722 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ∈ ℤ)
2322zred 12719 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ∈ ℝ)
24 simp2 1136 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝐴 ∈ (ℤ‘2))
25 frmy 42902 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2625fovcl 7560 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2724, 21, 26syl2anc 584 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) ∈ ℤ)
2827peano2zd 12722 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ∈ ℤ)
2928zred 12719 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ∈ ℝ)
3025fovcl 7560 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
3124, 22, 30syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
3231zred 12719 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
33 nn0re 12532 . . . . . . . 8 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
34333ad2ant1 1132 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ∈ ℝ)
3527zred 12719 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) ∈ ℝ)
36 1red 11259 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 1 ∈ ℝ)
37 simp3 1137 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ≤ (𝐴 Yrm 𝑏))
3834, 35, 36, 37leadd1dd 11874 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ≤ ((𝐴 Yrm 𝑏) + 1))
3934ltp1d 12195 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 < (𝑏 + 1))
40 ltrmy 42940 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ ∧ (𝑏 + 1) ∈ ℤ) → (𝑏 < (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1))))
4124, 21, 22, 40syl3anc 1370 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 < (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1))))
4239, 41mpbid 232 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)))
43 zltp1le 12664 . . . . . . . 8 (((𝐴 Yrm 𝑏) ∈ ℤ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℤ) → ((𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)) ↔ ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1))))
4427, 31, 43syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)) ↔ ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1))))
4542, 44mpbid 232 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1)))
4623, 29, 32, 38, 45letrd 11415 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))
47463exp 1118 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝑏 ≤ (𝐴 Yrm 𝑏) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))))
4847a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 ∈ (ℤ‘2) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))))
494, 8, 12, 16, 19, 48nn0ind 12710 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → 𝑁 ≤ (𝐴 Yrm 𝑁)))
5049impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cle 11293  2c2 12318  0cn0 12523  cz 12610  cuz 12875   Yrm crmy 42888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-gcd 16528  df-numer 16768  df-denom 16769  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-squarenn 42828  df-pell1qr 42829  df-pell14qr 42830  df-pell1234qr 42831  df-pellfund 42832  df-rmx 42889  df-rmy 42890
This theorem is referenced by:  jm2.27a  42993  jm2.27c  42995  expdiophlem1  43009
  Copyright terms: Public domain W3C validator