Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2m1lepw2m1 Structured version   Visualization version   GIF version

Theorem pw2m1lepw2m1 47501
Description: 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
pw2m1lepw2m1 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))

Proof of Theorem pw2m1lepw2m1
StepHypRef Expression
1 1lt2 12399 . . . 4 1 < 2
2 nncn 12236 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℂ)
3 1cnd 11225 . . . . . . 7 (𝐼 ∈ ℕ → 1 ∈ ℂ)
42, 3nncand 11592 . . . . . 6 (𝐼 ∈ ℕ → (𝐼 − (𝐼 − 1)) = 1)
54oveq2d 7430 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = (2↑1))
6 2cn 12303 . . . . . . 7 2 ∈ ℂ
76a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ ℂ)
8 2ne0 12332 . . . . . . 7 2 ≠ 0
98a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ≠ 0)
10 nnz 12595 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
11 peano2zm 12621 . . . . . . 7 (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ)
1210, 11syl 17 . . . . . 6 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ)
137, 9, 12, 10expsubd 14139 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = ((2↑𝐼) / (2↑(𝐼 − 1))))
14 exp1 14050 . . . . . 6 (2 ∈ ℂ → (2↑1) = 2)
156, 14mp1i 13 . . . . 5 (𝐼 ∈ ℕ → (2↑1) = 2)
165, 13, 153eqtr3d 2775 . . . 4 (𝐼 ∈ ℕ → ((2↑𝐼) / (2↑(𝐼 − 1))) = 2)
171, 16breqtrrid 5180 . . 3 (𝐼 ∈ ℕ → 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))
18 2nn 12301 . . . . . . 7 2 ∈ ℕ
1918a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ ℕ)
20 nnm1nn0 12529 . . . . . 6 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
2119, 20nnexpcld 14225 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ)
2221nnrpd 13032 . . . 4 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+)
23 2z 12610 . . . . . 6 2 ∈ ℤ
24 nnnn0 12495 . . . . . 6 (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0)
25 zexpcl 14059 . . . . . 6 ((2 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℤ)
2623, 24, 25sylancr 586 . . . . 5 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℤ)
2726zred 12682 . . . 4 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ)
28 divgt1b 47494 . . . 4 (((2↑(𝐼 − 1)) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))))
2922, 27, 28syl2anc 583 . . 3 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))))
3017, 29mpbird 257 . 2 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) < (2↑𝐼))
3121nnzd 12601 . . 3 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℤ)
32 zltlem1 12631 . . 3 (((2↑(𝐼 − 1)) ∈ ℤ ∧ (2↑𝐼) ∈ ℤ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)))
3331, 26, 32syl2anc 583 . 2 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)))
3430, 33mpbid 231 1 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  wne 2935   class class class wbr 5142  (class class class)co 7414  cc 11122  cr 11123  0cc0 11124  1c1 11125   < clt 11264  cle 11265  cmin 11460   / cdiv 11887  cn 12228  2c2 12283  0cn0 12488  cz 12574  +crp 12992  cexp 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-n0 12489  df-z 12575  df-uz 12839  df-rp 12993  df-seq 13985  df-exp 14045
This theorem is referenced by:  logbpw2m1  47553
  Copyright terms: Public domain W3C validator