Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2m1lepw2m1 Structured version   Visualization version   GIF version

Theorem pw2m1lepw2m1 44078
Description: 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
pw2m1lepw2m1 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))

Proof of Theorem pw2m1lepw2m1
StepHypRef Expression
1 1lt2 11662 . . . 4 1 < 2
2 nncn 11500 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℂ)
3 1cnd 10489 . . . . . . 7 (𝐼 ∈ ℕ → 1 ∈ ℂ)
42, 3nncand 10856 . . . . . 6 (𝐼 ∈ ℕ → (𝐼 − (𝐼 − 1)) = 1)
54oveq2d 7039 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = (2↑1))
6 2cn 11566 . . . . . . 7 2 ∈ ℂ
76a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ ℂ)
8 2ne0 11595 . . . . . . 7 2 ≠ 0
98a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ≠ 0)
10 nnz 11858 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
11 peano2zm 11879 . . . . . . 7 (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ)
1210, 11syl 17 . . . . . 6 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ)
137, 9, 12, 10expsubd 13375 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = ((2↑𝐼) / (2↑(𝐼 − 1))))
14 exp1 13289 . . . . . 6 (2 ∈ ℂ → (2↑1) = 2)
156, 14mp1i 13 . . . . 5 (𝐼 ∈ ℕ → (2↑1) = 2)
165, 13, 153eqtr3d 2841 . . . 4 (𝐼 ∈ ℕ → ((2↑𝐼) / (2↑(𝐼 − 1))) = 2)
171, 16breqtrrid 5006 . . 3 (𝐼 ∈ ℕ → 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))
18 2nn 11564 . . . . . . 7 2 ∈ ℕ
1918a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ ℕ)
20 nnm1nn0 11792 . . . . . 6 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
2119, 20nnexpcld 13460 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ)
2221nnrpd 12283 . . . 4 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+)
23 2z 11868 . . . . . 6 2 ∈ ℤ
24 nnnn0 11758 . . . . . 6 (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0)
25 zexpcl 13298 . . . . . 6 ((2 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℤ)
2623, 24, 25sylancr 587 . . . . 5 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℤ)
2726zred 11941 . . . 4 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ)
28 divgt1b 44071 . . . 4 (((2↑(𝐼 − 1)) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))))
2922, 27, 28syl2anc 584 . . 3 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))))
3017, 29mpbird 258 . 2 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) < (2↑𝐼))
3121nnzd 11940 . . 3 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℤ)
32 zltlem1 11889 . . 3 (((2↑(𝐼 − 1)) ∈ ℤ ∧ (2↑𝐼) ∈ ℤ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)))
3331, 26, 32syl2anc 584 . 2 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)))
3430, 33mpbid 233 1 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1525  wcel 2083  wne 2986   class class class wbr 4968  (class class class)co 7023  cc 10388  cr 10389  0cc0 10390  1c1 10391   < clt 10528  cle 10529  cmin 10723   / cdiv 11151  cn 11492  2c2 11546  0cn0 11751  cz 11835  +crp 12243  cexp 13283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-seq 13224  df-exp 13284
This theorem is referenced by:  logbpw2m1  44130
  Copyright terms: Public domain W3C validator