| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2m1lepw2m1 | Structured version Visualization version GIF version | ||
| Description: 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.) |
| Ref | Expression |
|---|---|
| pw2m1lepw2m1 | ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12298 | . . . 4 ⊢ 1 < 2 | |
| 2 | nncn 12140 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℂ) | |
| 3 | 1cnd 11114 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ∈ ℂ) | |
| 4 | 2, 3 | nncand 11484 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − (𝐼 − 1)) = 1) |
| 5 | 4 | oveq2d 7368 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = (2↑1)) |
| 6 | 2cn 12207 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℂ) |
| 8 | 2ne0 12236 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ≠ 0) |
| 10 | nnz 12496 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
| 11 | peano2zm 12521 | . . . . . . 7 ⊢ (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ) |
| 13 | 7, 9, 12, 10 | expsubd 14066 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = ((2↑𝐼) / (2↑(𝐼 − 1)))) |
| 14 | exp1 13976 | . . . . . 6 ⊢ (2 ∈ ℂ → (2↑1) = 2) | |
| 15 | 6, 14 | mp1i 13 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑1) = 2) |
| 16 | 5, 13, 15 | 3eqtr3d 2776 | . . . 4 ⊢ (𝐼 ∈ ℕ → ((2↑𝐼) / (2↑(𝐼 − 1))) = 2) |
| 17 | 1, 16 | breqtrrid 5131 | . . 3 ⊢ (𝐼 ∈ ℕ → 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))) |
| 18 | 2nn 12205 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℕ) |
| 20 | nnm1nn0 12429 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0) | |
| 21 | 19, 20 | nnexpcld 14154 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ) |
| 22 | 21 | nnrpd 12934 | . . . 4 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+) |
| 23 | 2z 12510 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 24 | nnnn0 12395 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0) | |
| 25 | zexpcl 13985 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℤ) | |
| 26 | 23, 24, 25 | sylancr 587 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℤ) |
| 27 | 26 | zred 12583 | . . . 4 ⊢ (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ) |
| 28 | divgt1b 48638 | . . . 4 ⊢ (((2↑(𝐼 − 1)) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))) | |
| 29 | 22, 27, 28 | syl2anc 584 | . . 3 ⊢ (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))) |
| 30 | 17, 29 | mpbird 257 | . 2 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) < (2↑𝐼)) |
| 31 | 21 | nnzd 12501 | . . 3 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℤ) |
| 32 | zltlem1 12531 | . . 3 ⊢ (((2↑(𝐼 − 1)) ∈ ℤ ∧ (2↑𝐼) ∈ ℤ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))) | |
| 33 | 31, 26, 32 | syl2anc 584 | . 2 ⊢ (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))) |
| 34 | 30, 33 | mpbid 232 | 1 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5093 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 < clt 11153 ≤ cle 11154 − cmin 11351 / cdiv 11781 ℕcn 12132 2c2 12187 ℕ0cn0 12388 ℤcz 12475 ℝ+crp 12892 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: logbpw2m1 48692 |
| Copyright terms: Public domain | W3C validator |