Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2m1lepw2m1 Structured version   Visualization version   GIF version

Theorem pw2m1lepw2m1 48645
Description: 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
pw2m1lepw2m1 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))

Proof of Theorem pw2m1lepw2m1
StepHypRef Expression
1 1lt2 12298 . . . 4 1 < 2
2 nncn 12140 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℂ)
3 1cnd 11114 . . . . . . 7 (𝐼 ∈ ℕ → 1 ∈ ℂ)
42, 3nncand 11484 . . . . . 6 (𝐼 ∈ ℕ → (𝐼 − (𝐼 − 1)) = 1)
54oveq2d 7368 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = (2↑1))
6 2cn 12207 . . . . . . 7 2 ∈ ℂ
76a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ ℂ)
8 2ne0 12236 . . . . . . 7 2 ≠ 0
98a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ≠ 0)
10 nnz 12496 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
11 peano2zm 12521 . . . . . . 7 (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ)
1210, 11syl 17 . . . . . 6 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ)
137, 9, 12, 10expsubd 14066 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = ((2↑𝐼) / (2↑(𝐼 − 1))))
14 exp1 13976 . . . . . 6 (2 ∈ ℂ → (2↑1) = 2)
156, 14mp1i 13 . . . . 5 (𝐼 ∈ ℕ → (2↑1) = 2)
165, 13, 153eqtr3d 2776 . . . 4 (𝐼 ∈ ℕ → ((2↑𝐼) / (2↑(𝐼 − 1))) = 2)
171, 16breqtrrid 5131 . . 3 (𝐼 ∈ ℕ → 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))
18 2nn 12205 . . . . . . 7 2 ∈ ℕ
1918a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ ℕ)
20 nnm1nn0 12429 . . . . . 6 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
2119, 20nnexpcld 14154 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ)
2221nnrpd 12934 . . . 4 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+)
23 2z 12510 . . . . . 6 2 ∈ ℤ
24 nnnn0 12395 . . . . . 6 (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0)
25 zexpcl 13985 . . . . . 6 ((2 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℤ)
2623, 24, 25sylancr 587 . . . . 5 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℤ)
2726zred 12583 . . . 4 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ)
28 divgt1b 48638 . . . 4 (((2↑(𝐼 − 1)) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))))
2922, 27, 28syl2anc 584 . . 3 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))))
3017, 29mpbird 257 . 2 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) < (2↑𝐼))
3121nnzd 12501 . . 3 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℤ)
32 zltlem1 12531 . . 3 (((2↑(𝐼 − 1)) ∈ ℤ ∧ (2↑𝐼) ∈ ℤ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)))
3331, 26, 32syl2anc 584 . 2 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)))
3430, 33mpbid 232 1 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  0cn0 12388  cz 12475  +crp 12892  cexp 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971
This theorem is referenced by:  logbpw2m1  48692
  Copyright terms: Public domain W3C validator