Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2m1lepw2m1 | Structured version Visualization version GIF version |
Description: 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
pw2m1lepw2m1 | ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 12001 | . . . 4 ⊢ 1 < 2 | |
2 | nncn 11838 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℂ) | |
3 | 1cnd 10828 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ∈ ℂ) | |
4 | 2, 3 | nncand 11194 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − (𝐼 − 1)) = 1) |
5 | 4 | oveq2d 7229 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = (2↑1)) |
6 | 2cn 11905 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℂ) |
8 | 2ne0 11934 | . . . . . . 7 ⊢ 2 ≠ 0 | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ≠ 0) |
10 | nnz 12199 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
11 | peano2zm 12220 | . . . . . . 7 ⊢ (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ) |
13 | 7, 9, 12, 10 | expsubd 13727 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = ((2↑𝐼) / (2↑(𝐼 − 1)))) |
14 | exp1 13641 | . . . . . 6 ⊢ (2 ∈ ℂ → (2↑1) = 2) | |
15 | 6, 14 | mp1i 13 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑1) = 2) |
16 | 5, 13, 15 | 3eqtr3d 2785 | . . . 4 ⊢ (𝐼 ∈ ℕ → ((2↑𝐼) / (2↑(𝐼 − 1))) = 2) |
17 | 1, 16 | breqtrrid 5091 | . . 3 ⊢ (𝐼 ∈ ℕ → 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))) |
18 | 2nn 11903 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℕ) |
20 | nnm1nn0 12131 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0) | |
21 | 19, 20 | nnexpcld 13812 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ) |
22 | 21 | nnrpd 12626 | . . . 4 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+) |
23 | 2z 12209 | . . . . . 6 ⊢ 2 ∈ ℤ | |
24 | nnnn0 12097 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0) | |
25 | zexpcl 13650 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℤ) | |
26 | 23, 24, 25 | sylancr 590 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℤ) |
27 | 26 | zred 12282 | . . . 4 ⊢ (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ) |
28 | divgt1b 45527 | . . . 4 ⊢ (((2↑(𝐼 − 1)) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))) | |
29 | 22, 27, 28 | syl2anc 587 | . . 3 ⊢ (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))) |
30 | 17, 29 | mpbird 260 | . 2 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) < (2↑𝐼)) |
31 | 21 | nnzd 12281 | . . 3 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℤ) |
32 | zltlem1 12230 | . . 3 ⊢ (((2↑(𝐼 − 1)) ∈ ℤ ∧ (2↑𝐼) ∈ ℤ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))) | |
33 | 31, 26, 32 | syl2anc 587 | . 2 ⊢ (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))) |
34 | 30, 33 | mpbid 235 | 1 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 class class class wbr 5053 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 1c1 10730 < clt 10867 ≤ cle 10868 − cmin 11062 / cdiv 11489 ℕcn 11830 2c2 11885 ℕ0cn0 12090 ℤcz 12176 ℝ+crp 12586 ↑cexp 13635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 |
This theorem is referenced by: logbpw2m1 45586 |
Copyright terms: Public domain | W3C validator |