Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2m1lepw2m1 | Structured version Visualization version GIF version |
Description: 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
pw2m1lepw2m1 | ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 12074 | . . . 4 ⊢ 1 < 2 | |
2 | nncn 11911 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℂ) | |
3 | 1cnd 10901 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ∈ ℂ) | |
4 | 2, 3 | nncand 11267 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − (𝐼 − 1)) = 1) |
5 | 4 | oveq2d 7271 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = (2↑1)) |
6 | 2cn 11978 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℂ) |
8 | 2ne0 12007 | . . . . . . 7 ⊢ 2 ≠ 0 | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ≠ 0) |
10 | nnz 12272 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
11 | peano2zm 12293 | . . . . . . 7 ⊢ (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ) |
13 | 7, 9, 12, 10 | expsubd 13803 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = ((2↑𝐼) / (2↑(𝐼 − 1)))) |
14 | exp1 13716 | . . . . . 6 ⊢ (2 ∈ ℂ → (2↑1) = 2) | |
15 | 6, 14 | mp1i 13 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑1) = 2) |
16 | 5, 13, 15 | 3eqtr3d 2786 | . . . 4 ⊢ (𝐼 ∈ ℕ → ((2↑𝐼) / (2↑(𝐼 − 1))) = 2) |
17 | 1, 16 | breqtrrid 5108 | . . 3 ⊢ (𝐼 ∈ ℕ → 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))) |
18 | 2nn 11976 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℕ) |
20 | nnm1nn0 12204 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0) | |
21 | 19, 20 | nnexpcld 13888 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ) |
22 | 21 | nnrpd 12699 | . . . 4 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+) |
23 | 2z 12282 | . . . . . 6 ⊢ 2 ∈ ℤ | |
24 | nnnn0 12170 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0) | |
25 | zexpcl 13725 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℤ) | |
26 | 23, 24, 25 | sylancr 586 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℤ) |
27 | 26 | zred 12355 | . . . 4 ⊢ (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ) |
28 | divgt1b 45742 | . . . 4 ⊢ (((2↑(𝐼 − 1)) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))) | |
29 | 22, 27, 28 | syl2anc 583 | . . 3 ⊢ (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))) |
30 | 17, 29 | mpbird 256 | . 2 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) < (2↑𝐼)) |
31 | 21 | nnzd 12354 | . . 3 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℤ) |
32 | zltlem1 12303 | . . 3 ⊢ (((2↑(𝐼 − 1)) ∈ ℤ ∧ (2↑𝐼) ∈ ℤ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))) | |
33 | 31, 26, 32 | syl2anc 583 | . 2 ⊢ (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))) |
34 | 30, 33 | mpbid 231 | 1 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 ℝ+crp 12659 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 |
This theorem is referenced by: logbpw2m1 45801 |
Copyright terms: Public domain | W3C validator |