| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2m1lepw2m1 | Structured version Visualization version GIF version | ||
| Description: 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.) |
| Ref | Expression |
|---|---|
| pw2m1lepw2m1 | ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12358 | . . . 4 ⊢ 1 < 2 | |
| 2 | nncn 12195 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℂ) | |
| 3 | 1cnd 11175 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ∈ ℂ) | |
| 4 | 2, 3 | nncand 11544 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − (𝐼 − 1)) = 1) |
| 5 | 4 | oveq2d 7405 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = (2↑1)) |
| 6 | 2cn 12262 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℂ) |
| 8 | 2ne0 12291 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ≠ 0) |
| 10 | nnz 12556 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
| 11 | peano2zm 12582 | . . . . . . 7 ⊢ (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ) |
| 13 | 7, 9, 12, 10 | expsubd 14128 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − (𝐼 − 1))) = ((2↑𝐼) / (2↑(𝐼 − 1)))) |
| 14 | exp1 14038 | . . . . . 6 ⊢ (2 ∈ ℂ → (2↑1) = 2) | |
| 15 | 6, 14 | mp1i 13 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑1) = 2) |
| 16 | 5, 13, 15 | 3eqtr3d 2773 | . . . 4 ⊢ (𝐼 ∈ ℕ → ((2↑𝐼) / (2↑(𝐼 − 1))) = 2) |
| 17 | 1, 16 | breqtrrid 5147 | . . 3 ⊢ (𝐼 ∈ ℕ → 1 < ((2↑𝐼) / (2↑(𝐼 − 1)))) |
| 18 | 2nn 12260 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℕ) |
| 20 | nnm1nn0 12489 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0) | |
| 21 | 19, 20 | nnexpcld 14216 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ) |
| 22 | 21 | nnrpd 12999 | . . . 4 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+) |
| 23 | 2z 12571 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 24 | nnnn0 12455 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0) | |
| 25 | zexpcl 14047 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℤ) | |
| 26 | 23, 24, 25 | sylancr 587 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℤ) |
| 27 | 26 | zred 12644 | . . . 4 ⊢ (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ) |
| 28 | divgt1b 48492 | . . . 4 ⊢ (((2↑(𝐼 − 1)) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))) | |
| 29 | 22, 27, 28 | syl2anc 584 | . . 3 ⊢ (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ 1 < ((2↑𝐼) / (2↑(𝐼 − 1))))) |
| 30 | 17, 29 | mpbird 257 | . 2 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) < (2↑𝐼)) |
| 31 | 21 | nnzd 12562 | . . 3 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℤ) |
| 32 | zltlem1 12592 | . . 3 ⊢ (((2↑(𝐼 − 1)) ∈ ℤ ∧ (2↑𝐼) ∈ ℤ) → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))) | |
| 33 | 31, 26, 32 | syl2anc 584 | . 2 ⊢ (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) < (2↑𝐼) ↔ (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))) |
| 34 | 30, 33 | mpbid 232 | 1 ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 (class class class)co 7389 ℂcc 11072 ℝcr 11073 0cc0 11074 1c1 11075 < clt 11214 ≤ cle 11215 − cmin 11411 / cdiv 11841 ℕcn 12187 2c2 12242 ℕ0cn0 12448 ℤcz 12535 ℝ+crp 12957 ↑cexp 14032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-seq 13973 df-exp 14033 |
| This theorem is referenced by: logbpw2m1 48546 |
| Copyright terms: Public domain | W3C validator |