![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashge1 | Structured version Visualization version GIF version |
Description: The cardinality of a nonempty set is greater than or equal to one. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
Ref | Expression |
---|---|
hashge1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 1 ≤ (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
2 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) | |
3 | hashnncl 14321 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) | |
4 | 3 | biimpar 479 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ) |
5 | 1, 2, 4 | syl2anc 585 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐴 ∈ Fin) → (♯‘𝐴) ∈ ℕ) |
6 | 5 | nnge1d 12255 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐴 ∈ Fin) → 1 ≤ (♯‘𝐴)) |
7 | 1xr 11268 | . . . 4 ⊢ 1 ∈ ℝ* | |
8 | pnfge 13105 | . . . 4 ⊢ (1 ∈ ℝ* → 1 ≤ +∞) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ 1 ≤ +∞ |
10 | hashinf 14290 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
11 | 10 | adantlr 714 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) |
12 | 9, 11 | breqtrrid 5184 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ ¬ 𝐴 ∈ Fin) → 1 ≤ (♯‘𝐴)) |
13 | 6, 12 | pm2.61dan 812 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 1 ≤ (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∅c0 4320 class class class wbr 5146 ‘cfv 6539 Fincfn 8934 1c1 11106 +∞cpnf 11240 ℝ*cxr 11242 ≤ cle 11244 ℕcn 12207 ♯chash 14285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-card 9929 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-nn 12208 df-n0 12468 df-z 12554 df-uz 12818 df-fz 13480 df-hash 14286 |
This theorem is referenced by: 1elfz0hash 14345 hashnn0n0nn 14346 wlk1walk 28875 wlkiswwlks2 29108 friendship 29631 hasheuni 33020 fourierdlem52 44808 |
Copyright terms: Public domain | W3C validator |