Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrgt0 Structured version   Visualization version   GIF version

Theorem pell14qrgt0 42340
Description: A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrgt0 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ 0 < ๐ด)

Proof of Theorem pell14qrgt0
Dummy variables ๐‘Ž ๐‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell14qr 42330 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐ด โˆˆ (Pell14QRโ€˜๐ท) โ†” (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
2 0cnd 11232 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โˆˆ โ„‚)
3 eldifi 4120 . . . . . . . . . . . . . . . . . . 19 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ๐ท โˆˆ โ„•)
43ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐ท โˆˆ โ„•)
54nnred 12252 . . . . . . . . . . . . . . . . 17 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐ท โˆˆ โ„)
64nnnn0d 12557 . . . . . . . . . . . . . . . . . 18 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐ท โˆˆ โ„•0)
76nn0ge0d 12560 . . . . . . . . . . . . . . . . 17 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค ๐ท)
85, 7resqrtcld 15391 . . . . . . . . . . . . . . . 16 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (โˆšโ€˜๐ท) โˆˆ โ„)
9 zre 12587 . . . . . . . . . . . . . . . . . 18 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„)
109adantl 480 . . . . . . . . . . . . . . . . 17 ((๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘ โˆˆ โ„)
1110ad2antlr 725 . . . . . . . . . . . . . . . 16 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐‘ โˆˆ โ„)
128, 11remulcld 11269 . . . . . . . . . . . . . . 15 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„)
1312recnd 11267 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚)
142, 13abssubd 15427 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (absโ€˜(0 โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))) = (absโ€˜(((โˆšโ€˜๐ท) ยท ๐‘) โˆ’ 0)))
1513subid1d 11585 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (((โˆšโ€˜๐ท) ยท ๐‘) โˆ’ 0) = ((โˆšโ€˜๐ท) ยท ๐‘))
1615fveq2d 6894 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (absโ€˜(((โˆšโ€˜๐ท) ยท ๐‘) โˆ’ 0)) = (absโ€˜((โˆšโ€˜๐ท) ยท ๐‘)))
1714, 16eqtrd 2765 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (absโ€˜(0 โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))) = (absโ€˜((โˆšโ€˜๐ท) ยท ๐‘)))
18 absresq 15276 . . . . . . . . . . . . . . . 16 (((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„ โ†’ ((absโ€˜((โˆšโ€˜๐ท) ยท ๐‘))โ†‘2) = (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2))
1912, 18syl 17 . . . . . . . . . . . . . . 15 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((absโ€˜((โˆšโ€˜๐ท) ยท ๐‘))โ†‘2) = (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2))
205recnd 11267 . . . . . . . . . . . . . . . . 17 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐ท โˆˆ โ„‚)
2120sqrtcld 15411 . . . . . . . . . . . . . . . 16 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (โˆšโ€˜๐ท) โˆˆ โ„‚)
2210recnd 11267 . . . . . . . . . . . . . . . . 17 ((๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘ โˆˆ โ„‚)
2322ad2antlr 725 . . . . . . . . . . . . . . . 16 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐‘ โˆˆ โ„‚)
2421, 23sqmuld 14149 . . . . . . . . . . . . . . 15 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2) = (((โˆšโ€˜๐ท)โ†‘2) ยท (๐‘โ†‘2)))
2520sqsqrtd 15413 . . . . . . . . . . . . . . . 16 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((โˆšโ€˜๐ท)โ†‘2) = ๐ท)
2625oveq1d 7428 . . . . . . . . . . . . . . 15 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (((โˆšโ€˜๐ท)โ†‘2) ยท (๐‘โ†‘2)) = (๐ท ยท (๐‘โ†‘2)))
2719, 24, 263eqtrd 2769 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((absโ€˜((โˆšโ€˜๐ท) ยท ๐‘))โ†‘2) = (๐ท ยท (๐‘โ†‘2)))
28 0lt1 11761 . . . . . . . . . . . . . . . 16 0 < 1
29 simpr 483 . . . . . . . . . . . . . . . 16 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)
3028, 29breqtrrid 5182 . . . . . . . . . . . . . . 15 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 < ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))))
3111resqcld 14116 . . . . . . . . . . . . . . . . 17 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐‘โ†‘2) โˆˆ โ„)
325, 31remulcld 11269 . . . . . . . . . . . . . . . 16 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐ท ยท (๐‘โ†‘2)) โˆˆ โ„)
33 nn0re 12506 . . . . . . . . . . . . . . . . . . 19 (๐‘Ž โˆˆ โ„•0 โ†’ ๐‘Ž โˆˆ โ„)
3433adantr 479 . . . . . . . . . . . . . . . . . 18 ((๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘Ž โˆˆ โ„)
3534ad2antlr 725 . . . . . . . . . . . . . . . . 17 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐‘Ž โˆˆ โ„)
3635resqcld 14116 . . . . . . . . . . . . . . . 16 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐‘Žโ†‘2) โˆˆ โ„)
3732, 36posdifd 11826 . . . . . . . . . . . . . . 15 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((๐ท ยท (๐‘โ†‘2)) < (๐‘Žโ†‘2) โ†” 0 < ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2)))))
3830, 37mpbird 256 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐ท ยท (๐‘โ†‘2)) < (๐‘Žโ†‘2))
3927, 38eqbrtrd 5166 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((absโ€˜((โˆšโ€˜๐ท) ยท ๐‘))โ†‘2) < (๐‘Žโ†‘2))
4013abscld 15410 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (absโ€˜((โˆšโ€˜๐ท) ยท ๐‘)) โˆˆ โ„)
4113absge0d 15418 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค (absโ€˜((โˆšโ€˜๐ท) ยท ๐‘)))
42 nn0ge0 12522 . . . . . . . . . . . . . . . 16 (๐‘Ž โˆˆ โ„•0 โ†’ 0 โ‰ค ๐‘Ž)
4342adantr 479 . . . . . . . . . . . . . . 15 ((๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค) โ†’ 0 โ‰ค ๐‘Ž)
4443ad2antlr 725 . . . . . . . . . . . . . 14 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โ‰ค ๐‘Ž)
4540, 35, 41, 44lt2sqd 14245 . . . . . . . . . . . . 13 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((absโ€˜((โˆšโ€˜๐ท) ยท ๐‘)) < ๐‘Ž โ†” ((absโ€˜((โˆšโ€˜๐ท) ยท ๐‘))โ†‘2) < (๐‘Žโ†‘2)))
4639, 45mpbird 256 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (absโ€˜((โˆšโ€˜๐ท) ยท ๐‘)) < ๐‘Ž)
4717, 46eqbrtrd 5166 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (absโ€˜(0 โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))) < ๐‘Ž)
48 0red 11242 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 โˆˆ โ„)
4948, 12, 35absdifltd 15407 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((absโ€˜(0 โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))) < ๐‘Ž โ†” ((((โˆšโ€˜๐ท) ยท ๐‘) โˆ’ ๐‘Ž) < 0 โˆง 0 < (((โˆšโ€˜๐ท) ยท ๐‘) + ๐‘Ž))))
5047, 49mpbid 231 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ((((โˆšโ€˜๐ท) ยท ๐‘) โˆ’ ๐‘Ž) < 0 โˆง 0 < (((โˆšโ€˜๐ท) ยท ๐‘) + ๐‘Ž)))
5150simprd 494 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 < (((โˆšโ€˜๐ท) ยท ๐‘) + ๐‘Ž))
52 nn0cn 12507 . . . . . . . . . . . 12 (๐‘Ž โˆˆ โ„•0 โ†’ ๐‘Ž โˆˆ โ„‚)
5352adantr 479 . . . . . . . . . . 11 ((๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘Ž โˆˆ โ„‚)
5453ad2antlr 725 . . . . . . . . . 10 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ ๐‘Ž โˆˆ โ„‚)
5554, 13addcomd 11441 . . . . . . . . 9 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) = (((โˆšโ€˜๐ท) ยท ๐‘) + ๐‘Ž))
5651, 55breqtrrd 5172 . . . . . . . 8 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 < (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
5756adantrl 714 . . . . . . 7 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ 0 < (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
58 simprl 769 . . . . . . 7 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
5957, 58breqtrrd 5172 . . . . . 6 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ 0 < ๐ด)
6059ex 411 . . . . 5 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 < ๐ด))
6160rexlimdvva 3202 . . . 4 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ โ„) โ†’ (โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ 0 < ๐ด))
6261expimpd 452 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ((๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ 0 < ๐ด))
631, 62sylbid 239 . 2 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐ด โˆˆ (Pell14QRโ€˜๐ท) โ†’ 0 < ๐ด))
6463imp 405 1 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ 0 < ๐ด)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 394   = wceq 1533   โˆˆ wcel 2098  โˆƒwrex 3060   โˆ– cdif 3938   class class class wbr 5144  โ€˜cfv 6543  (class class class)co 7413  โ„‚cc 11131  โ„cr 11132  0cc0 11133  1c1 11134   + caddc 11136   ยท cmul 11138   < clt 11273   โ‰ค cle 11274   โˆ’ cmin 11469  โ„•cn 12237  2c2 12292  โ„•0cn0 12497  โ„คcz 12583  โ†‘cexp 14053  โˆšcsqrt 15207  abscabs 15208  โ—ปNNcsquarenn 42317  Pell14QRcpell14qr 42320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-pell14qr 42324
This theorem is referenced by:  pell14qrrp  42341  elpell14qr2  42343  elpell1qr2  42353  pellfundex  42367
  Copyright terms: Public domain W3C validator