Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrgt0 Structured version   Visualization version   GIF version

Theorem pell14qrgt0 39797
Description: A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrgt0 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴)

Proof of Theorem pell14qrgt0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell14qr 39787 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
2 0cnd 10627 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ∈ ℂ)
3 eldifi 4057 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
43ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℕ)
54nnred 11644 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℝ)
64nnnn0d 11947 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℕ0)
76nn0ge0d 11950 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ 𝐷)
85, 7resqrtcld 14773 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (√‘𝐷) ∈ ℝ)
9 zre 11977 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
109adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 𝑏 ∈ ℝ)
1110ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑏 ∈ ℝ)
128, 11remulcld 10664 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘𝐷) · 𝑏) ∈ ℝ)
1312recnd 10662 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘𝐷) · 𝑏) ∈ ℂ)
142, 13abssubd 14809 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘(0 − ((√‘𝐷) · 𝑏))) = (abs‘(((√‘𝐷) · 𝑏) − 0)))
1513subid1d 10979 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (((√‘𝐷) · 𝑏) − 0) = ((√‘𝐷) · 𝑏))
1615fveq2d 6653 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘(((√‘𝐷) · 𝑏) − 0)) = (abs‘((√‘𝐷) · 𝑏)))
1714, 16eqtrd 2836 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘(0 − ((√‘𝐷) · 𝑏))) = (abs‘((√‘𝐷) · 𝑏)))
18 absresq 14658 . . . . . . . . . . . . . . . 16 (((√‘𝐷) · 𝑏) ∈ ℝ → ((abs‘((√‘𝐷) · 𝑏))↑2) = (((√‘𝐷) · 𝑏)↑2))
1912, 18syl 17 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘((√‘𝐷) · 𝑏))↑2) = (((√‘𝐷) · 𝑏)↑2))
205recnd 10662 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℂ)
2120sqrtcld 14793 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (√‘𝐷) ∈ ℂ)
2210recnd 10662 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
2322ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑏 ∈ ℂ)
2421, 23sqmuld 13522 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (((√‘𝐷) · 𝑏)↑2) = (((√‘𝐷)↑2) · (𝑏↑2)))
2520sqsqrtd 14795 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘𝐷)↑2) = 𝐷)
2625oveq1d 7154 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (((√‘𝐷)↑2) · (𝑏↑2)) = (𝐷 · (𝑏↑2)))
2719, 24, 263eqtrd 2840 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘((√‘𝐷) · 𝑏))↑2) = (𝐷 · (𝑏↑2)))
28 0lt1 11155 . . . . . . . . . . . . . . . 16 0 < 1
29 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
3028, 29breqtrrid 5071 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < ((𝑎↑2) − (𝐷 · (𝑏↑2))))
3111resqcld 13611 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑏↑2) ∈ ℝ)
325, 31remulcld 10664 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐷 · (𝑏↑2)) ∈ ℝ)
33 nn0re 11898 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
3433adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 𝑎 ∈ ℝ)
3534ad2antlr 726 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑎 ∈ ℝ)
3635resqcld 13611 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑎↑2) ∈ ℝ)
3732, 36posdifd 11220 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((𝐷 · (𝑏↑2)) < (𝑎↑2) ↔ 0 < ((𝑎↑2) − (𝐷 · (𝑏↑2)))))
3830, 37mpbird 260 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐷 · (𝑏↑2)) < (𝑎↑2))
3927, 38eqbrtrd 5055 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘((√‘𝐷) · 𝑏))↑2) < (𝑎↑2))
4013abscld 14792 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘((√‘𝐷) · 𝑏)) ∈ ℝ)
4113absge0d 14800 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ (abs‘((√‘𝐷) · 𝑏)))
42 nn0ge0 11914 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
4342adantr 484 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 0 ≤ 𝑎)
4443ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ 𝑎)
4540, 35, 41, 44lt2sqd 13619 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘((√‘𝐷) · 𝑏)) < 𝑎 ↔ ((abs‘((√‘𝐷) · 𝑏))↑2) < (𝑎↑2)))
4639, 45mpbird 260 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘((√‘𝐷) · 𝑏)) < 𝑎)
4717, 46eqbrtrd 5055 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘(0 − ((√‘𝐷) · 𝑏))) < 𝑎)
48 0red 10637 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ∈ ℝ)
4948, 12, 35absdifltd 14789 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘(0 − ((√‘𝐷) · 𝑏))) < 𝑎 ↔ ((((√‘𝐷) · 𝑏) − 𝑎) < 0 ∧ 0 < (((√‘𝐷) · 𝑏) + 𝑎))))
5047, 49mpbid 235 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((((√‘𝐷) · 𝑏) − 𝑎) < 0 ∧ 0 < (((√‘𝐷) · 𝑏) + 𝑎)))
5150simprd 499 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < (((√‘𝐷) · 𝑏) + 𝑎))
52 nn0cn 11899 . . . . . . . . . . . 12 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
5352adantr 484 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
5453ad2antlr 726 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑎 ∈ ℂ)
5554, 13addcomd 10835 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑎 + ((√‘𝐷) · 𝑏)) = (((√‘𝐷) · 𝑏) + 𝑎))
5651, 55breqtrrd 5061 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < (𝑎 + ((√‘𝐷) · 𝑏)))
5756adantrl 715 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 0 < (𝑎 + ((√‘𝐷) · 𝑏)))
58 simprl 770 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
5957, 58breqtrrd 5061 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 0 < 𝐴)
6059ex 416 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < 𝐴))
6160rexlimdvva 3256 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < 𝐴))
6261expimpd 457 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 0 < 𝐴))
631, 62sylbid 243 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) → 0 < 𝐴))
6463imp 410 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wrex 3110  cdif 3881   class class class wbr 5033  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863  cn 11629  2c2 11684  0cn0 11889  cz 11973  cexp 13429  csqrt 14588  abscabs 14589  NNcsquarenn 39774  Pell14QRcpell14qr 39777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-pell14qr 39781
This theorem is referenced by:  pell14qrrp  39798  elpell14qr2  39800  elpell1qr2  39810  pellfundex  39824
  Copyright terms: Public domain W3C validator