Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrgt0 Structured version   Visualization version   GIF version

Theorem pell14qrgt0 42847
Description: A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrgt0 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴)

Proof of Theorem pell14qrgt0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell14qr 42837 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
2 0cnd 11167 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ∈ ℂ)
3 eldifi 4094 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
43ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℕ)
54nnred 12201 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℝ)
64nnnn0d 12503 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℕ0)
76nn0ge0d 12506 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ 𝐷)
85, 7resqrtcld 15384 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (√‘𝐷) ∈ ℝ)
9 zre 12533 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
109adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 𝑏 ∈ ℝ)
1110ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑏 ∈ ℝ)
128, 11remulcld 11204 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘𝐷) · 𝑏) ∈ ℝ)
1312recnd 11202 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘𝐷) · 𝑏) ∈ ℂ)
142, 13abssubd 15422 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘(0 − ((√‘𝐷) · 𝑏))) = (abs‘(((√‘𝐷) · 𝑏) − 0)))
1513subid1d 11522 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (((√‘𝐷) · 𝑏) − 0) = ((√‘𝐷) · 𝑏))
1615fveq2d 6862 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘(((√‘𝐷) · 𝑏) − 0)) = (abs‘((√‘𝐷) · 𝑏)))
1714, 16eqtrd 2764 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘(0 − ((√‘𝐷) · 𝑏))) = (abs‘((√‘𝐷) · 𝑏)))
18 absresq 15268 . . . . . . . . . . . . . . . 16 (((√‘𝐷) · 𝑏) ∈ ℝ → ((abs‘((√‘𝐷) · 𝑏))↑2) = (((√‘𝐷) · 𝑏)↑2))
1912, 18syl 17 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘((√‘𝐷) · 𝑏))↑2) = (((√‘𝐷) · 𝑏)↑2))
205recnd 11202 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐷 ∈ ℂ)
2120sqrtcld 15406 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (√‘𝐷) ∈ ℂ)
2210recnd 11202 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
2322ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑏 ∈ ℂ)
2421, 23sqmuld 14123 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (((√‘𝐷) · 𝑏)↑2) = (((√‘𝐷)↑2) · (𝑏↑2)))
2520sqsqrtd 15408 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((√‘𝐷)↑2) = 𝐷)
2625oveq1d 7402 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (((√‘𝐷)↑2) · (𝑏↑2)) = (𝐷 · (𝑏↑2)))
2719, 24, 263eqtrd 2768 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘((√‘𝐷) · 𝑏))↑2) = (𝐷 · (𝑏↑2)))
28 0lt1 11700 . . . . . . . . . . . . . . . 16 0 < 1
29 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
3028, 29breqtrrid 5145 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < ((𝑎↑2) − (𝐷 · (𝑏↑2))))
3111resqcld 14090 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑏↑2) ∈ ℝ)
325, 31remulcld 11204 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐷 · (𝑏↑2)) ∈ ℝ)
33 nn0re 12451 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
3433adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 𝑎 ∈ ℝ)
3534ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑎 ∈ ℝ)
3635resqcld 14090 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑎↑2) ∈ ℝ)
3732, 36posdifd 11765 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((𝐷 · (𝑏↑2)) < (𝑎↑2) ↔ 0 < ((𝑎↑2) − (𝐷 · (𝑏↑2)))))
3830, 37mpbird 257 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐷 · (𝑏↑2)) < (𝑎↑2))
3927, 38eqbrtrd 5129 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘((√‘𝐷) · 𝑏))↑2) < (𝑎↑2))
4013abscld 15405 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘((√‘𝐷) · 𝑏)) ∈ ℝ)
4113absge0d 15413 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ (abs‘((√‘𝐷) · 𝑏)))
42 nn0ge0 12467 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
4342adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 0 ≤ 𝑎)
4443ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ≤ 𝑎)
4540, 35, 41, 44lt2sqd 14221 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘((√‘𝐷) · 𝑏)) < 𝑎 ↔ ((abs‘((√‘𝐷) · 𝑏))↑2) < (𝑎↑2)))
4639, 45mpbird 257 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘((√‘𝐷) · 𝑏)) < 𝑎)
4717, 46eqbrtrd 5129 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (abs‘(0 − ((√‘𝐷) · 𝑏))) < 𝑎)
48 0red 11177 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 ∈ ℝ)
4948, 12, 35absdifltd 15402 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((abs‘(0 − ((√‘𝐷) · 𝑏))) < 𝑎 ↔ ((((√‘𝐷) · 𝑏) − 𝑎) < 0 ∧ 0 < (((√‘𝐷) · 𝑏) + 𝑎))))
5047, 49mpbid 232 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((((√‘𝐷) · 𝑏) − 𝑎) < 0 ∧ 0 < (((√‘𝐷) · 𝑏) + 𝑎)))
5150simprd 495 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < (((√‘𝐷) · 𝑏) + 𝑎))
52 nn0cn 12452 . . . . . . . . . . . 12 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
5352adantr 480 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
5453ad2antlr 727 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝑎 ∈ ℂ)
5554, 13addcomd 11376 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑎 + ((√‘𝐷) · 𝑏)) = (((√‘𝐷) · 𝑏) + 𝑎))
5651, 55breqtrrd 5135 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < (𝑎 + ((√‘𝐷) · 𝑏)))
5756adantrl 716 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 0 < (𝑎 + ((√‘𝐷) · 𝑏)))
58 simprl 770 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
5957, 58breqtrrd 5135 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 0 < 𝐴)
6059ex 412 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < 𝐴))
6160rexlimdvva 3194 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 0 < 𝐴))
6261expimpd 453 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 0 < 𝐴))
631, 62sylbid 240 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) → 0 < 𝐴))
6463imp 406 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3911   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cz 12529  cexp 14026  csqrt 15199  abscabs 15200  NNcsquarenn 42824  Pell14QRcpell14qr 42827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-pell14qr 42831
This theorem is referenced by:  pell14qrrp  42848  elpell14qr2  42850  elpell1qr2  42860  pellfundex  42874
  Copyright terms: Public domain W3C validator