| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnmbl | Structured version Visualization version GIF version | ||
| Description: All open sets are measurable. This proof, via dyadmbl 25529 and uniioombl 25518, shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| opnmbl | ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 / (2↑𝑦)) = (𝑧 / (2↑𝑦))) | |
| 2 | oveq1 7353 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | |
| 3 | 2 | oveq1d 7361 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑧 + 1) / (2↑𝑦))) |
| 4 | 1, 3 | opeq12d 4833 | . . 3 ⊢ (𝑥 = 𝑧 → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 = 〈(𝑧 / (2↑𝑦)), ((𝑧 + 1) / (2↑𝑦))〉) |
| 5 | oveq2 7354 | . . . . 5 ⊢ (𝑦 = 𝑤 → (2↑𝑦) = (2↑𝑤)) | |
| 6 | 5 | oveq2d 7362 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝑧 / (2↑𝑦)) = (𝑧 / (2↑𝑤))) |
| 7 | 5 | oveq2d 7362 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 + 1) / (2↑𝑦)) = ((𝑧 + 1) / (2↑𝑤))) |
| 8 | 6, 7 | opeq12d 4833 | . . 3 ⊢ (𝑦 = 𝑤 → 〈(𝑧 / (2↑𝑦)), ((𝑧 + 1) / (2↑𝑦))〉 = 〈(𝑧 / (2↑𝑤)), ((𝑧 + 1) / (2↑𝑤))〉) |
| 9 | 4, 8 | cbvmpov 7441 | . 2 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) = (𝑧 ∈ ℤ, 𝑤 ∈ ℕ0 ↦ 〈(𝑧 / (2↑𝑤)), ((𝑧 + 1) / (2↑𝑤))〉) |
| 10 | 9 | opnmbllem 25530 | 1 ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 〈cop 4582 dom cdm 5616 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1c1 11007 + caddc 11009 / cdiv 11774 2c2 12180 ℕ0cn0 12381 ℤcz 12468 (,)cioo 13245 ↑cexp 13968 topGenctg 17341 volcvol 25392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-rest 17326 df-topgen 17347 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-top 22810 df-topon 22827 df-bases 22862 df-cmp 23303 df-ovol 25393 df-vol 25394 |
| This theorem is referenced by: subopnmbl 25533 mblfinlem3 37705 mblfinlem4 37706 ismblfin 37707 |
| Copyright terms: Public domain | W3C validator |