Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opnmbl | Structured version Visualization version GIF version |
Description: All open sets are measurable. This proof, via dyadmbl 24847 and uniioombl 24836, shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015.) |
Ref | Expression |
---|---|
opnmbl | ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7324 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 / (2↑𝑦)) = (𝑧 / (2↑𝑦))) | |
2 | oveq1 7324 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | |
3 | 2 | oveq1d 7332 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑧 + 1) / (2↑𝑦))) |
4 | 1, 3 | opeq12d 4823 | . . 3 ⊢ (𝑥 = 𝑧 → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 = 〈(𝑧 / (2↑𝑦)), ((𝑧 + 1) / (2↑𝑦))〉) |
5 | oveq2 7325 | . . . . 5 ⊢ (𝑦 = 𝑤 → (2↑𝑦) = (2↑𝑤)) | |
6 | 5 | oveq2d 7333 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝑧 / (2↑𝑦)) = (𝑧 / (2↑𝑤))) |
7 | 5 | oveq2d 7333 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 + 1) / (2↑𝑦)) = ((𝑧 + 1) / (2↑𝑤))) |
8 | 6, 7 | opeq12d 4823 | . . 3 ⊢ (𝑦 = 𝑤 → 〈(𝑧 / (2↑𝑦)), ((𝑧 + 1) / (2↑𝑦))〉 = 〈(𝑧 / (2↑𝑤)), ((𝑧 + 1) / (2↑𝑤))〉) |
9 | 4, 8 | cbvmpov 7412 | . 2 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) = (𝑧 ∈ ℤ, 𝑤 ∈ ℕ0 ↦ 〈(𝑧 / (2↑𝑤)), ((𝑧 + 1) / (2↑𝑤))〉) |
10 | 9 | opnmbllem 24848 | 1 ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 〈cop 4577 dom cdm 5608 ran crn 5609 ‘cfv 6466 (class class class)co 7317 ∈ cmpo 7319 1c1 10952 + caddc 10954 / cdiv 11712 2c2 12108 ℕ0cn0 12313 ℤcz 12399 (,)cioo 13159 ↑cexp 13862 topGenctg 17225 volcvol 24710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-inf2 9477 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-disj 5053 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-2o 8347 df-oadd 8350 df-omul 8351 df-er 8548 df-map 8667 df-pm 8668 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-fi 9247 df-sup 9278 df-inf 9279 df-oi 9346 df-dju 9737 df-card 9775 df-acn 9778 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-n0 12314 df-z 12400 df-uz 12663 df-q 12769 df-rp 12811 df-xneg 12928 df-xadd 12929 df-xmul 12930 df-ioo 13163 df-ico 13165 df-icc 13166 df-fz 13320 df-fzo 13463 df-fl 13592 df-seq 13802 df-exp 13863 df-hash 14125 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-clim 15276 df-rlim 15277 df-sum 15477 df-rest 17210 df-topgen 17231 df-psmet 20672 df-xmet 20673 df-met 20674 df-bl 20675 df-mopn 20676 df-top 22126 df-topon 22143 df-bases 22179 df-cmp 22621 df-ovol 24711 df-vol 24712 |
This theorem is referenced by: subopnmbl 24851 mblfinlem3 35888 mblfinlem4 35889 ismblfin 35890 |
Copyright terms: Public domain | W3C validator |