Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opnmbl | Structured version Visualization version GIF version |
Description: All open sets are measurable. This proof, via dyadmbl 24669 and uniioombl 24658, shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015.) |
Ref | Expression |
---|---|
opnmbl | ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 / (2↑𝑦)) = (𝑧 / (2↑𝑦))) | |
2 | oveq1 7262 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | |
3 | 2 | oveq1d 7270 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑧 + 1) / (2↑𝑦))) |
4 | 1, 3 | opeq12d 4809 | . . 3 ⊢ (𝑥 = 𝑧 → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 = 〈(𝑧 / (2↑𝑦)), ((𝑧 + 1) / (2↑𝑦))〉) |
5 | oveq2 7263 | . . . . 5 ⊢ (𝑦 = 𝑤 → (2↑𝑦) = (2↑𝑤)) | |
6 | 5 | oveq2d 7271 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝑧 / (2↑𝑦)) = (𝑧 / (2↑𝑤))) |
7 | 5 | oveq2d 7271 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 + 1) / (2↑𝑦)) = ((𝑧 + 1) / (2↑𝑤))) |
8 | 6, 7 | opeq12d 4809 | . . 3 ⊢ (𝑦 = 𝑤 → 〈(𝑧 / (2↑𝑦)), ((𝑧 + 1) / (2↑𝑦))〉 = 〈(𝑧 / (2↑𝑤)), ((𝑧 + 1) / (2↑𝑤))〉) |
9 | 4, 8 | cbvmpov 7348 | . 2 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) = (𝑧 ∈ ℤ, 𝑤 ∈ ℕ0 ↦ 〈(𝑧 / (2↑𝑤)), ((𝑧 + 1) / (2↑𝑤))〉) |
10 | 9 | opnmbllem 24670 | 1 ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 〈cop 4564 dom cdm 5580 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1c1 10803 + caddc 10805 / cdiv 11562 2c2 11958 ℕ0cn0 12163 ℤcz 12249 (,)cioo 13008 ↑cexp 13710 topGenctg 17065 volcvol 24532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-rest 17050 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 df-cmp 22446 df-ovol 24533 df-vol 24534 |
This theorem is referenced by: subopnmbl 24673 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 |
Copyright terms: Public domain | W3C validator |