| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnmbl | Structured version Visualization version GIF version | ||
| Description: All open sets are measurable. This proof, via dyadmbl 25507 and uniioombl 25496, shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| opnmbl | ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7396 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 / (2↑𝑦)) = (𝑧 / (2↑𝑦))) | |
| 2 | oveq1 7396 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | |
| 3 | 2 | oveq1d 7404 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑧 + 1) / (2↑𝑦))) |
| 4 | 1, 3 | opeq12d 4847 | . . 3 ⊢ (𝑥 = 𝑧 → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 = 〈(𝑧 / (2↑𝑦)), ((𝑧 + 1) / (2↑𝑦))〉) |
| 5 | oveq2 7397 | . . . . 5 ⊢ (𝑦 = 𝑤 → (2↑𝑦) = (2↑𝑤)) | |
| 6 | 5 | oveq2d 7405 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝑧 / (2↑𝑦)) = (𝑧 / (2↑𝑤))) |
| 7 | 5 | oveq2d 7405 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 + 1) / (2↑𝑦)) = ((𝑧 + 1) / (2↑𝑤))) |
| 8 | 6, 7 | opeq12d 4847 | . . 3 ⊢ (𝑦 = 𝑤 → 〈(𝑧 / (2↑𝑦)), ((𝑧 + 1) / (2↑𝑦))〉 = 〈(𝑧 / (2↑𝑤)), ((𝑧 + 1) / (2↑𝑤))〉) |
| 9 | 4, 8 | cbvmpov 7486 | . 2 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) = (𝑧 ∈ ℤ, 𝑤 ∈ ℕ0 ↦ 〈(𝑧 / (2↑𝑤)), ((𝑧 + 1) / (2↑𝑤))〉) |
| 10 | 9 | opnmbllem 25508 | 1 ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 〈cop 4597 dom cdm 5640 ran crn 5641 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 1c1 11075 + caddc 11077 / cdiv 11841 2c2 12242 ℕ0cn0 12448 ℤcz 12535 (,)cioo 13312 ↑cexp 14032 topGenctg 17406 volcvol 25370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-disj 5077 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-omul 8441 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-dju 9860 df-card 9898 df-acn 9901 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-fl 13760 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-clim 15460 df-rlim 15461 df-sum 15659 df-rest 17391 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-top 22787 df-topon 22804 df-bases 22839 df-cmp 23280 df-ovol 25371 df-vol 25372 |
| This theorem is referenced by: subopnmbl 25511 mblfinlem3 37648 mblfinlem4 37649 ismblfin 37650 |
| Copyright terms: Public domain | W3C validator |