Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetpmtr12 Structured version   Visualization version   GIF version

Theorem mdetpmtr12 33788
Description: The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
mdetpmtr.a 𝐴 = (𝑁 Mat 𝑅)
mdetpmtr.b 𝐵 = (Base‘𝐴)
mdetpmtr.d 𝐷 = (𝑁 maDet 𝑅)
mdetpmtr.g 𝐺 = (Base‘(SymGrp‘𝑁))
mdetpmtr.s 𝑆 = (pmSgn‘𝑁)
mdetpmtr.z 𝑍 = (ℤRHom‘𝑅)
mdetpmtr.t · = (.r𝑅)
mdetpmtr12.e 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))
mdetmptr12.r (𝜑𝑅 ∈ CRing)
mdetmptr12.n (𝜑𝑁 ∈ Fin)
mdetmptr12.m (𝜑𝑀𝐵)
mdetmptr12.p (𝜑𝑃𝐺)
mdetmptr12.q (𝜑𝑄𝐺)
Assertion
Ref Expression
mdetpmtr12 (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑄,𝑖,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetpmtr12
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetmptr12.r . . 3 (𝜑𝑅 ∈ CRing)
2 mdetmptr12.n . . 3 (𝜑𝑁 ∈ Fin)
3 mdetmptr12.m . . 3 (𝜑𝑀𝐵)
4 mdetmptr12.p . . 3 (𝜑𝑃𝐺)
5 mdetpmtr.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
6 mdetpmtr.b . . . 4 𝐵 = (Base‘𝐴)
7 mdetpmtr.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
8 mdetpmtr.g . . . 4 𝐺 = (Base‘(SymGrp‘𝑁))
9 mdetpmtr.s . . . 4 𝑆 = (pmSgn‘𝑁)
10 mdetpmtr.z . . . 4 𝑍 = (ℤRHom‘𝑅)
11 mdetpmtr.t . . . 4 · = (.r𝑅)
12 fveq2 6840 . . . . . 6 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
1312oveq1d 7384 . . . . 5 (𝑘 = 𝑖 → ((𝑃𝑘)𝑀𝑙) = ((𝑃𝑖)𝑀𝑙))
14 oveq2 7377 . . . . 5 (𝑙 = 𝑗 → ((𝑃𝑖)𝑀𝑙) = ((𝑃𝑖)𝑀𝑗))
1513, 14cbvmpov 7464 . . . 4 (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
165, 6, 7, 8, 9, 10, 11, 15mdetpmtr1 33786 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))))
171, 2, 3, 4, 16syl22anc 838 . 2 (𝜑 → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))))
18 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1943ad2ant1 1133 . . . . . . . 8 ((𝜑𝑘𝑁𝑙𝑁) → 𝑃𝐺)
20 simp2 1137 . . . . . . . 8 ((𝜑𝑘𝑁𝑙𝑁) → 𝑘𝑁)
21 eqid 2729 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2221, 8symgfv 19286 . . . . . . . 8 ((𝑃𝐺𝑘𝑁) → (𝑃𝑘) ∈ 𝑁)
2319, 20, 22syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → (𝑃𝑘) ∈ 𝑁)
24 simp3 1138 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → 𝑙𝑁)
2533ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → 𝑀𝐵)
265, 18, 6, 23, 24, 25matecld 22289 . . . . . 6 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑃𝑘)𝑀𝑙) ∈ (Base‘𝑅))
275, 18, 6, 2, 1, 26matbas2d 22286 . . . . 5 (𝜑 → (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) ∈ 𝐵)
28 mdetmptr12.q . . . . 5 (𝜑𝑄𝐺)
29 eqid 2729 . . . . . 6 (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)))
305, 6, 7, 8, 9, 10, 11, 29mdetpmtr2 33787 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ ((𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) ∈ 𝐵𝑄𝐺)) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
311, 2, 27, 28, 30syl22anc 838 . . . 4 (𝜑 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
32 mdetpmtr12.e . . . . . . 7 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))
33 simp2 1137 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → 𝑖𝑁)
34283ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖𝑁𝑗𝑁) → 𝑄𝐺)
35 simp3 1138 . . . . . . . . . 10 ((𝜑𝑖𝑁𝑗𝑁) → 𝑗𝑁)
3621, 8symgfv 19286 . . . . . . . . . 10 ((𝑄𝐺𝑗𝑁) → (𝑄𝑗) ∈ 𝑁)
3734, 35, 36syl2anc 584 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → (𝑄𝑗) ∈ 𝑁)
38 oveq2 7377 . . . . . . . . . 10 (𝑙 = (𝑄𝑗) → ((𝑃𝑖)𝑀𝑙) = ((𝑃𝑖)𝑀(𝑄𝑗)))
39 eqid 2729 . . . . . . . . . 10 (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) = (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))
40 ovex 7402 . . . . . . . . . 10 ((𝑃𝑖)𝑀(𝑄𝑗)) ∈ V
4113, 38, 39, 40ovmpo 7529 . . . . . . . . 9 ((𝑖𝑁 ∧ (𝑄𝑗) ∈ 𝑁) → (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)) = ((𝑃𝑖)𝑀(𝑄𝑗)))
4233, 37, 41syl2anc 584 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)) = ((𝑃𝑖)𝑀(𝑄𝑗)))
4342mpoeq3dva 7446 . . . . . . 7 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗))))
4432, 43eqtr4id 2783 . . . . . 6 (𝜑𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))
4544fveq2d 6844 . . . . 5 (𝜑 → (𝐷𝐸) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)))))
4645oveq2d 7385 . . . 4 (𝜑 → (((𝑍𝑆)‘𝑄) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
4731, 46eqtr4d 2767 . . 3 (𝜑 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷𝐸)))
4847oveq2d 7385 . 2 (𝜑 → (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
49 crngring 20130 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
501, 49syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
518, 9, 10zrhcopsgnelbas 21480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃𝐺) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
5250, 2, 4, 51syl3anc 1373 . . . 4 (𝜑 → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
538, 9, 10zrhcopsgnelbas 21480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝐺) → ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅))
5450, 2, 28, 53syl3anc 1373 . . . 4 (𝜑 → ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅))
5543ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → 𝑃𝐺)
5621, 8symgfv 19286 . . . . . . . . 9 ((𝑃𝐺𝑖𝑁) → (𝑃𝑖) ∈ 𝑁)
5755, 33, 56syl2anc 584 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → (𝑃𝑖) ∈ 𝑁)
5833ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → 𝑀𝐵)
595, 18, 6, 57, 37, 58matecld 22289 . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → ((𝑃𝑖)𝑀(𝑄𝑗)) ∈ (Base‘𝑅))
605, 18, 6, 2, 1, 59matbas2d 22286 . . . . . 6 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗))) ∈ 𝐵)
6132, 60eqeltrid 2832 . . . . 5 (𝜑𝐸𝐵)
627, 5, 6, 18mdetcl 22459 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐸𝐵) → (𝐷𝐸) ∈ (Base‘𝑅))
631, 61, 62syl2anc 584 . . . 4 (𝜑 → (𝐷𝐸) ∈ (Base‘𝑅))
6418, 11ringass 20138 . . . 4 ((𝑅 ∈ Ring ∧ (((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅) ∧ ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅) ∧ (𝐷𝐸) ∈ (Base‘𝑅))) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
6550, 52, 54, 63, 64syl13anc 1374 . . 3 (𝜑 → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
668, 9cofipsgn 21478 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
672, 4, 66syl2anc 584 . . . . . 6 (𝜑 → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
688, 9cofipsgn 21478 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑄𝐺) → ((𝑍𝑆)‘𝑄) = (𝑍‘(𝑆𝑄)))
692, 28, 68syl2anc 584 . . . . . 6 (𝜑 → ((𝑍𝑆)‘𝑄) = (𝑍‘(𝑆𝑄)))
7067, 69oveq12d 7387 . . . . 5 (𝜑 → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
7110zrhrhm 21397 . . . . . . 7 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
7250, 71syl 17 . . . . . 6 (𝜑𝑍 ∈ (ℤring RingHom 𝑅))
73 1z 12539 . . . . . . . 8 1 ∈ ℤ
74 neg1z 12545 . . . . . . . 8 -1 ∈ ℤ
75 prssi 4781 . . . . . . . 8 ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ)
7673, 74, 75mp2an 692 . . . . . . 7 {1, -1} ⊆ ℤ
778, 9psgnran 19421 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑆𝑃) ∈ {1, -1})
782, 4, 77syl2anc 584 . . . . . . 7 (𝜑 → (𝑆𝑃) ∈ {1, -1})
7976, 78sselid 3941 . . . . . 6 (𝜑 → (𝑆𝑃) ∈ ℤ)
808, 9psgnran 19421 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑄𝐺) → (𝑆𝑄) ∈ {1, -1})
812, 28, 80syl2anc 584 . . . . . . 7 (𝜑 → (𝑆𝑄) ∈ {1, -1})
8276, 81sselid 3941 . . . . . 6 (𝜑 → (𝑆𝑄) ∈ ℤ)
83 zringbas 21339 . . . . . . 7 ℤ = (Base‘ℤring)
84 zringmulr 21343 . . . . . . 7 · = (.r‘ℤring)
8583, 84, 11rhmmul 20371 . . . . . 6 ((𝑍 ∈ (ℤring RingHom 𝑅) ∧ (𝑆𝑃) ∈ ℤ ∧ (𝑆𝑄) ∈ ℤ) → (𝑍‘((𝑆𝑃) · (𝑆𝑄))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
8672, 79, 82, 85syl3anc 1373 . . . . 5 (𝜑 → (𝑍‘((𝑆𝑃) · (𝑆𝑄))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
8770, 86eqtr4d 2767 . . . 4 (𝜑 → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) = (𝑍‘((𝑆𝑃) · (𝑆𝑄))))
8887oveq1d 7384 . . 3 (𝜑 → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
8965, 88eqtr3d 2766 . 2 (𝜑 → (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
9017, 48, 893eqtrd 2768 1 (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wss 3911  {cpr 4587  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  Fincfn 8895  1c1 11045   · cmul 11049  -cneg 11382  cz 12505  Basecbs 17155  .rcmulr 17197  SymGrpcsymg 19275  pmSgncpsgn 19395  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  ringczring 21332  ℤRHomczrh 21385   Mat cmat 22270   maDet cmdat 22447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-ghm 19121  df-gim 19167  df-cntz 19225  df-oppg 19254  df-symg 19276  df-pmtr 19348  df-psgn 19397  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-sra 21056  df-rgmod 21057  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-dsmm 21617  df-frlm 21632  df-mat 22271  df-mdet 22448
This theorem is referenced by:  madjusmdetlem1  33790
  Copyright terms: Public domain W3C validator