Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetpmtr12 Structured version   Visualization version   GIF version

Theorem mdetpmtr12 33822
Description: The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
mdetpmtr.a 𝐴 = (𝑁 Mat 𝑅)
mdetpmtr.b 𝐵 = (Base‘𝐴)
mdetpmtr.d 𝐷 = (𝑁 maDet 𝑅)
mdetpmtr.g 𝐺 = (Base‘(SymGrp‘𝑁))
mdetpmtr.s 𝑆 = (pmSgn‘𝑁)
mdetpmtr.z 𝑍 = (ℤRHom‘𝑅)
mdetpmtr.t · = (.r𝑅)
mdetpmtr12.e 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))
mdetmptr12.r (𝜑𝑅 ∈ CRing)
mdetmptr12.n (𝜑𝑁 ∈ Fin)
mdetmptr12.m (𝜑𝑀𝐵)
mdetmptr12.p (𝜑𝑃𝐺)
mdetmptr12.q (𝜑𝑄𝐺)
Assertion
Ref Expression
mdetpmtr12 (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑄,𝑖,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetpmtr12
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetmptr12.r . . 3 (𝜑𝑅 ∈ CRing)
2 mdetmptr12.n . . 3 (𝜑𝑁 ∈ Fin)
3 mdetmptr12.m . . 3 (𝜑𝑀𝐵)
4 mdetmptr12.p . . 3 (𝜑𝑃𝐺)
5 mdetpmtr.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
6 mdetpmtr.b . . . 4 𝐵 = (Base‘𝐴)
7 mdetpmtr.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
8 mdetpmtr.g . . . 4 𝐺 = (Base‘(SymGrp‘𝑁))
9 mdetpmtr.s . . . 4 𝑆 = (pmSgn‘𝑁)
10 mdetpmtr.z . . . 4 𝑍 = (ℤRHom‘𝑅)
11 mdetpmtr.t . . . 4 · = (.r𝑅)
12 fveq2 6861 . . . . . 6 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
1312oveq1d 7405 . . . . 5 (𝑘 = 𝑖 → ((𝑃𝑘)𝑀𝑙) = ((𝑃𝑖)𝑀𝑙))
14 oveq2 7398 . . . . 5 (𝑙 = 𝑗 → ((𝑃𝑖)𝑀𝑙) = ((𝑃𝑖)𝑀𝑗))
1513, 14cbvmpov 7487 . . . 4 (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
165, 6, 7, 8, 9, 10, 11, 15mdetpmtr1 33820 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))))
171, 2, 3, 4, 16syl22anc 838 . 2 (𝜑 → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))))
18 eqid 2730 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1943ad2ant1 1133 . . . . . . . 8 ((𝜑𝑘𝑁𝑙𝑁) → 𝑃𝐺)
20 simp2 1137 . . . . . . . 8 ((𝜑𝑘𝑁𝑙𝑁) → 𝑘𝑁)
21 eqid 2730 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2221, 8symgfv 19317 . . . . . . . 8 ((𝑃𝐺𝑘𝑁) → (𝑃𝑘) ∈ 𝑁)
2319, 20, 22syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → (𝑃𝑘) ∈ 𝑁)
24 simp3 1138 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → 𝑙𝑁)
2533ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → 𝑀𝐵)
265, 18, 6, 23, 24, 25matecld 22320 . . . . . 6 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑃𝑘)𝑀𝑙) ∈ (Base‘𝑅))
275, 18, 6, 2, 1, 26matbas2d 22317 . . . . 5 (𝜑 → (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) ∈ 𝐵)
28 mdetmptr12.q . . . . 5 (𝜑𝑄𝐺)
29 eqid 2730 . . . . . 6 (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)))
305, 6, 7, 8, 9, 10, 11, 29mdetpmtr2 33821 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ ((𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) ∈ 𝐵𝑄𝐺)) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
311, 2, 27, 28, 30syl22anc 838 . . . 4 (𝜑 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
32 mdetpmtr12.e . . . . . . 7 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))
33 simp2 1137 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → 𝑖𝑁)
34283ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖𝑁𝑗𝑁) → 𝑄𝐺)
35 simp3 1138 . . . . . . . . . 10 ((𝜑𝑖𝑁𝑗𝑁) → 𝑗𝑁)
3621, 8symgfv 19317 . . . . . . . . . 10 ((𝑄𝐺𝑗𝑁) → (𝑄𝑗) ∈ 𝑁)
3734, 35, 36syl2anc 584 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → (𝑄𝑗) ∈ 𝑁)
38 oveq2 7398 . . . . . . . . . 10 (𝑙 = (𝑄𝑗) → ((𝑃𝑖)𝑀𝑙) = ((𝑃𝑖)𝑀(𝑄𝑗)))
39 eqid 2730 . . . . . . . . . 10 (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) = (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))
40 ovex 7423 . . . . . . . . . 10 ((𝑃𝑖)𝑀(𝑄𝑗)) ∈ V
4113, 38, 39, 40ovmpo 7552 . . . . . . . . 9 ((𝑖𝑁 ∧ (𝑄𝑗) ∈ 𝑁) → (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)) = ((𝑃𝑖)𝑀(𝑄𝑗)))
4233, 37, 41syl2anc 584 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)) = ((𝑃𝑖)𝑀(𝑄𝑗)))
4342mpoeq3dva 7469 . . . . . . 7 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗))))
4432, 43eqtr4id 2784 . . . . . 6 (𝜑𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))
4544fveq2d 6865 . . . . 5 (𝜑 → (𝐷𝐸) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)))))
4645oveq2d 7406 . . . 4 (𝜑 → (((𝑍𝑆)‘𝑄) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
4731, 46eqtr4d 2768 . . 3 (𝜑 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷𝐸)))
4847oveq2d 7406 . 2 (𝜑 → (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
49 crngring 20161 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
501, 49syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
518, 9, 10zrhcopsgnelbas 21511 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃𝐺) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
5250, 2, 4, 51syl3anc 1373 . . . 4 (𝜑 → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
538, 9, 10zrhcopsgnelbas 21511 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝐺) → ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅))
5450, 2, 28, 53syl3anc 1373 . . . 4 (𝜑 → ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅))
5543ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → 𝑃𝐺)
5621, 8symgfv 19317 . . . . . . . . 9 ((𝑃𝐺𝑖𝑁) → (𝑃𝑖) ∈ 𝑁)
5755, 33, 56syl2anc 584 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → (𝑃𝑖) ∈ 𝑁)
5833ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → 𝑀𝐵)
595, 18, 6, 57, 37, 58matecld 22320 . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → ((𝑃𝑖)𝑀(𝑄𝑗)) ∈ (Base‘𝑅))
605, 18, 6, 2, 1, 59matbas2d 22317 . . . . . 6 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗))) ∈ 𝐵)
6132, 60eqeltrid 2833 . . . . 5 (𝜑𝐸𝐵)
627, 5, 6, 18mdetcl 22490 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐸𝐵) → (𝐷𝐸) ∈ (Base‘𝑅))
631, 61, 62syl2anc 584 . . . 4 (𝜑 → (𝐷𝐸) ∈ (Base‘𝑅))
6418, 11ringass 20169 . . . 4 ((𝑅 ∈ Ring ∧ (((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅) ∧ ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅) ∧ (𝐷𝐸) ∈ (Base‘𝑅))) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
6550, 52, 54, 63, 64syl13anc 1374 . . 3 (𝜑 → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
668, 9cofipsgn 21509 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
672, 4, 66syl2anc 584 . . . . . 6 (𝜑 → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
688, 9cofipsgn 21509 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑄𝐺) → ((𝑍𝑆)‘𝑄) = (𝑍‘(𝑆𝑄)))
692, 28, 68syl2anc 584 . . . . . 6 (𝜑 → ((𝑍𝑆)‘𝑄) = (𝑍‘(𝑆𝑄)))
7067, 69oveq12d 7408 . . . . 5 (𝜑 → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
7110zrhrhm 21428 . . . . . . 7 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
7250, 71syl 17 . . . . . 6 (𝜑𝑍 ∈ (ℤring RingHom 𝑅))
73 1z 12570 . . . . . . . 8 1 ∈ ℤ
74 neg1z 12576 . . . . . . . 8 -1 ∈ ℤ
75 prssi 4788 . . . . . . . 8 ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ)
7673, 74, 75mp2an 692 . . . . . . 7 {1, -1} ⊆ ℤ
778, 9psgnran 19452 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑆𝑃) ∈ {1, -1})
782, 4, 77syl2anc 584 . . . . . . 7 (𝜑 → (𝑆𝑃) ∈ {1, -1})
7976, 78sselid 3947 . . . . . 6 (𝜑 → (𝑆𝑃) ∈ ℤ)
808, 9psgnran 19452 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑄𝐺) → (𝑆𝑄) ∈ {1, -1})
812, 28, 80syl2anc 584 . . . . . . 7 (𝜑 → (𝑆𝑄) ∈ {1, -1})
8276, 81sselid 3947 . . . . . 6 (𝜑 → (𝑆𝑄) ∈ ℤ)
83 zringbas 21370 . . . . . . 7 ℤ = (Base‘ℤring)
84 zringmulr 21374 . . . . . . 7 · = (.r‘ℤring)
8583, 84, 11rhmmul 20402 . . . . . 6 ((𝑍 ∈ (ℤring RingHom 𝑅) ∧ (𝑆𝑃) ∈ ℤ ∧ (𝑆𝑄) ∈ ℤ) → (𝑍‘((𝑆𝑃) · (𝑆𝑄))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
8672, 79, 82, 85syl3anc 1373 . . . . 5 (𝜑 → (𝑍‘((𝑆𝑃) · (𝑆𝑄))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
8770, 86eqtr4d 2768 . . . 4 (𝜑 → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) = (𝑍‘((𝑆𝑃) · (𝑆𝑄))))
8887oveq1d 7405 . . 3 (𝜑 → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
8965, 88eqtr3d 2767 . 2 (𝜑 → (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
9017, 48, 893eqtrd 2769 1 (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wss 3917  {cpr 4594  ccom 5645  cfv 6514  (class class class)co 7390  cmpo 7392  Fincfn 8921  1c1 11076   · cmul 11080  -cneg 11413  cz 12536  Basecbs 17186  .rcmulr 17228  SymGrpcsymg 19306  pmSgncpsgn 19426  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  ringczring 21363  ℤRHomczrh 21416   Mat cmat 22301   maDet cmdat 22478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-symg 19307  df-pmtr 19379  df-psgn 19428  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-dsmm 21648  df-frlm 21663  df-mat 22302  df-mdet 22479
This theorem is referenced by:  madjusmdetlem1  33824
  Copyright terms: Public domain W3C validator