Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetpmtr12 Structured version   Visualization version   GIF version

Theorem mdetpmtr12 33910
Description: The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
mdetpmtr.a 𝐴 = (𝑁 Mat 𝑅)
mdetpmtr.b 𝐵 = (Base‘𝐴)
mdetpmtr.d 𝐷 = (𝑁 maDet 𝑅)
mdetpmtr.g 𝐺 = (Base‘(SymGrp‘𝑁))
mdetpmtr.s 𝑆 = (pmSgn‘𝑁)
mdetpmtr.z 𝑍 = (ℤRHom‘𝑅)
mdetpmtr.t · = (.r𝑅)
mdetpmtr12.e 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))
mdetmptr12.r (𝜑𝑅 ∈ CRing)
mdetmptr12.n (𝜑𝑁 ∈ Fin)
mdetmptr12.m (𝜑𝑀𝐵)
mdetmptr12.p (𝜑𝑃𝐺)
mdetmptr12.q (𝜑𝑄𝐺)
Assertion
Ref Expression
mdetpmtr12 (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑄,𝑖,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetpmtr12
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetmptr12.r . . 3 (𝜑𝑅 ∈ CRing)
2 mdetmptr12.n . . 3 (𝜑𝑁 ∈ Fin)
3 mdetmptr12.m . . 3 (𝜑𝑀𝐵)
4 mdetmptr12.p . . 3 (𝜑𝑃𝐺)
5 mdetpmtr.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
6 mdetpmtr.b . . . 4 𝐵 = (Base‘𝐴)
7 mdetpmtr.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
8 mdetpmtr.g . . . 4 𝐺 = (Base‘(SymGrp‘𝑁))
9 mdetpmtr.s . . . 4 𝑆 = (pmSgn‘𝑁)
10 mdetpmtr.z . . . 4 𝑍 = (ℤRHom‘𝑅)
11 mdetpmtr.t . . . 4 · = (.r𝑅)
12 fveq2 6831 . . . . . 6 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
1312oveq1d 7370 . . . . 5 (𝑘 = 𝑖 → ((𝑃𝑘)𝑀𝑙) = ((𝑃𝑖)𝑀𝑙))
14 oveq2 7363 . . . . 5 (𝑙 = 𝑗 → ((𝑃𝑖)𝑀𝑙) = ((𝑃𝑖)𝑀𝑗))
1513, 14cbvmpov 7450 . . . 4 (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
165, 6, 7, 8, 9, 10, 11, 15mdetpmtr1 33908 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))))
171, 2, 3, 4, 16syl22anc 838 . 2 (𝜑 → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))))
18 eqid 2733 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1943ad2ant1 1133 . . . . . . . 8 ((𝜑𝑘𝑁𝑙𝑁) → 𝑃𝐺)
20 simp2 1137 . . . . . . . 8 ((𝜑𝑘𝑁𝑙𝑁) → 𝑘𝑁)
21 eqid 2733 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2221, 8symgfv 19300 . . . . . . . 8 ((𝑃𝐺𝑘𝑁) → (𝑃𝑘) ∈ 𝑁)
2319, 20, 22syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → (𝑃𝑘) ∈ 𝑁)
24 simp3 1138 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → 𝑙𝑁)
2533ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → 𝑀𝐵)
265, 18, 6, 23, 24, 25matecld 22361 . . . . . 6 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑃𝑘)𝑀𝑙) ∈ (Base‘𝑅))
275, 18, 6, 2, 1, 26matbas2d 22358 . . . . 5 (𝜑 → (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) ∈ 𝐵)
28 mdetmptr12.q . . . . 5 (𝜑𝑄𝐺)
29 eqid 2733 . . . . . 6 (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)))
305, 6, 7, 8, 9, 10, 11, 29mdetpmtr2 33909 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ ((𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) ∈ 𝐵𝑄𝐺)) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
311, 2, 27, 28, 30syl22anc 838 . . . 4 (𝜑 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
32 mdetpmtr12.e . . . . . . 7 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))
33 simp2 1137 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → 𝑖𝑁)
34283ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖𝑁𝑗𝑁) → 𝑄𝐺)
35 simp3 1138 . . . . . . . . . 10 ((𝜑𝑖𝑁𝑗𝑁) → 𝑗𝑁)
3621, 8symgfv 19300 . . . . . . . . . 10 ((𝑄𝐺𝑗𝑁) → (𝑄𝑗) ∈ 𝑁)
3734, 35, 36syl2anc 584 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → (𝑄𝑗) ∈ 𝑁)
38 oveq2 7363 . . . . . . . . . 10 (𝑙 = (𝑄𝑗) → ((𝑃𝑖)𝑀𝑙) = ((𝑃𝑖)𝑀(𝑄𝑗)))
39 eqid 2733 . . . . . . . . . 10 (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) = (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))
40 ovex 7388 . . . . . . . . . 10 ((𝑃𝑖)𝑀(𝑄𝑗)) ∈ V
4113, 38, 39, 40ovmpo 7515 . . . . . . . . 9 ((𝑖𝑁 ∧ (𝑄𝑗) ∈ 𝑁) → (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)) = ((𝑃𝑖)𝑀(𝑄𝑗)))
4233, 37, 41syl2anc 584 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)) = ((𝑃𝑖)𝑀(𝑄𝑗)))
4342mpoeq3dva 7432 . . . . . . 7 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗))))
4432, 43eqtr4id 2787 . . . . . 6 (𝜑𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))
4544fveq2d 6835 . . . . 5 (𝜑 → (𝐷𝐸) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)))))
4645oveq2d 7371 . . . 4 (𝜑 → (((𝑍𝑆)‘𝑄) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
4731, 46eqtr4d 2771 . . 3 (𝜑 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷𝐸)))
4847oveq2d 7371 . 2 (𝜑 → (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
49 crngring 20171 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
501, 49syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
518, 9, 10zrhcopsgnelbas 21541 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃𝐺) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
5250, 2, 4, 51syl3anc 1373 . . . 4 (𝜑 → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
538, 9, 10zrhcopsgnelbas 21541 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝐺) → ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅))
5450, 2, 28, 53syl3anc 1373 . . . 4 (𝜑 → ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅))
5543ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → 𝑃𝐺)
5621, 8symgfv 19300 . . . . . . . . 9 ((𝑃𝐺𝑖𝑁) → (𝑃𝑖) ∈ 𝑁)
5755, 33, 56syl2anc 584 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → (𝑃𝑖) ∈ 𝑁)
5833ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → 𝑀𝐵)
595, 18, 6, 57, 37, 58matecld 22361 . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → ((𝑃𝑖)𝑀(𝑄𝑗)) ∈ (Base‘𝑅))
605, 18, 6, 2, 1, 59matbas2d 22358 . . . . . 6 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗))) ∈ 𝐵)
6132, 60eqeltrid 2837 . . . . 5 (𝜑𝐸𝐵)
627, 5, 6, 18mdetcl 22531 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐸𝐵) → (𝐷𝐸) ∈ (Base‘𝑅))
631, 61, 62syl2anc 584 . . . 4 (𝜑 → (𝐷𝐸) ∈ (Base‘𝑅))
6418, 11ringass 20179 . . . 4 ((𝑅 ∈ Ring ∧ (((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅) ∧ ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅) ∧ (𝐷𝐸) ∈ (Base‘𝑅))) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
6550, 52, 54, 63, 64syl13anc 1374 . . 3 (𝜑 → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
668, 9cofipsgn 21539 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
672, 4, 66syl2anc 584 . . . . . 6 (𝜑 → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
688, 9cofipsgn 21539 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑄𝐺) → ((𝑍𝑆)‘𝑄) = (𝑍‘(𝑆𝑄)))
692, 28, 68syl2anc 584 . . . . . 6 (𝜑 → ((𝑍𝑆)‘𝑄) = (𝑍‘(𝑆𝑄)))
7067, 69oveq12d 7373 . . . . 5 (𝜑 → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
7110zrhrhm 21457 . . . . . . 7 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
7250, 71syl 17 . . . . . 6 (𝜑𝑍 ∈ (ℤring RingHom 𝑅))
73 1z 12512 . . . . . . . 8 1 ∈ ℤ
74 neg1z 12518 . . . . . . . 8 -1 ∈ ℤ
75 prssi 4774 . . . . . . . 8 ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ)
7673, 74, 75mp2an 692 . . . . . . 7 {1, -1} ⊆ ℤ
778, 9psgnran 19435 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑆𝑃) ∈ {1, -1})
782, 4, 77syl2anc 584 . . . . . . 7 (𝜑 → (𝑆𝑃) ∈ {1, -1})
7976, 78sselid 3928 . . . . . 6 (𝜑 → (𝑆𝑃) ∈ ℤ)
808, 9psgnran 19435 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑄𝐺) → (𝑆𝑄) ∈ {1, -1})
812, 28, 80syl2anc 584 . . . . . . 7 (𝜑 → (𝑆𝑄) ∈ {1, -1})
8276, 81sselid 3928 . . . . . 6 (𝜑 → (𝑆𝑄) ∈ ℤ)
83 zringbas 21399 . . . . . . 7 ℤ = (Base‘ℤring)
84 zringmulr 21403 . . . . . . 7 · = (.r‘ℤring)
8583, 84, 11rhmmul 20412 . . . . . 6 ((𝑍 ∈ (ℤring RingHom 𝑅) ∧ (𝑆𝑃) ∈ ℤ ∧ (𝑆𝑄) ∈ ℤ) → (𝑍‘((𝑆𝑃) · (𝑆𝑄))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
8672, 79, 82, 85syl3anc 1373 . . . . 5 (𝜑 → (𝑍‘((𝑆𝑃) · (𝑆𝑄))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
8770, 86eqtr4d 2771 . . . 4 (𝜑 → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) = (𝑍‘((𝑆𝑃) · (𝑆𝑄))))
8887oveq1d 7370 . . 3 (𝜑 → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
8965, 88eqtr3d 2770 . 2 (𝜑 → (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
9017, 48, 893eqtrd 2772 1 (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wss 3898  {cpr 4579  ccom 5625  cfv 6489  (class class class)co 7355  cmpo 7357  Fincfn 8879  1c1 11018   · cmul 11022  -cneg 11356  cz 12479  Basecbs 17127  .rcmulr 17169  SymGrpcsymg 19289  pmSgncpsgn 19409  Ringcrg 20159  CRingccrg 20160   RingHom crh 20396  ringczring 21392  ℤRHomczrh 21445   Mat cmat 22342   maDet cmdat 22519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-addf 11096  ax-mulf 11097
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-word 14428  df-lsw 14477  df-concat 14485  df-s1 14511  df-substr 14556  df-pfx 14586  df-splice 14664  df-reverse 14673  df-s2 14762  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-0g 17352  df-gsum 17353  df-prds 17358  df-pws 17360  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-efmnd 18785  df-grp 18857  df-minusg 18858  df-mulg 18989  df-subg 19044  df-ghm 19133  df-gim 19179  df-cntz 19237  df-oppg 19266  df-symg 19290  df-pmtr 19362  df-psgn 19411  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-dvr 20328  df-rhm 20399  df-subrng 20470  df-subrg 20494  df-drng 20655  df-sra 21116  df-rgmod 21117  df-cnfld 21301  df-zring 21393  df-zrh 21449  df-dsmm 21678  df-frlm 21693  df-mat 22343  df-mdet 22520
This theorem is referenced by:  madjusmdetlem1  33912
  Copyright terms: Public domain W3C validator