Proof of Theorem cdleme35d
Step | Hyp | Ref
| Expression |
1 | | cdleme35.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
2 | | cdleme35.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
3 | | cdleme35.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
4 | | cdleme35.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | cdleme35.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | cdleme35.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
7 | | cdleme35.f |
. . . 4
⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
8 | 1, 2, 3, 4, 5, 6, 7 | cdleme35c 38392 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∨ 𝐹) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
9 | 8 | oveq1d 7270 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∨ 𝐹) ∧ 𝑊) = ((𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) ∧ 𝑊)) |
10 | | simp11l 1282 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) |
11 | | simp13l 1286 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
12 | 10 | hllatd 37305 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ Lat) |
13 | | simp12l 1284 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ 𝐴) |
14 | | simp2rl 1240 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ∈ 𝐴) |
15 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
16 | 15, 2, 4 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
17 | 10, 13, 14, 16 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
18 | | simp11r 1283 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑊 ∈ 𝐻) |
19 | 15, 5 | lhpbase 37939 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
20 | 18, 19 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑊 ∈ (Base‘𝐾)) |
21 | 15, 3 | latmcl 18073 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾)) |
22 | 12, 17, 20, 21 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾)) |
23 | 15, 1, 3 | latmle2 18098 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ≤ 𝑊) |
24 | 12, 17, 20, 23 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ≤ 𝑊) |
25 | 15, 1, 2, 3, 4 | atmod4i2 37808 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ ((𝑃 ∨ 𝑅) ∧ 𝑊) ≤ 𝑊) → ((𝑄 ∧ 𝑊) ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) ∧ 𝑊)) |
26 | 10, 11, 22, 20, 24, 25 | syl131anc 1381 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∧ 𝑊) ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) ∧ 𝑊)) |
27 | | simp11 1201 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | | simp13 1203 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
29 | | eqid 2738 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
30 | 1, 3, 29, 4, 5 | lhpmat 37971 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑄 ∧ 𝑊) = (0.‘𝐾)) |
31 | 27, 28, 30 | syl2anc 583 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∧ 𝑊) = (0.‘𝐾)) |
32 | 31 | oveq1d 7270 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∧ 𝑊) ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((0.‘𝐾) ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
33 | | hlol 37302 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
34 | 10, 33 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ OL) |
35 | 15, 2, 29 | olj02 37167 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
36 | 34, 22, 35 | syl2anc 583 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((0.‘𝐾) ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
37 | 32, 36 | eqtrd 2778 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∧ 𝑊) ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
38 | 9, 26, 37 | 3eqtr2d 2784 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∨ 𝐹) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |