Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme51finvtrN Structured version   Visualization version   GIF version

Theorem cdleme51finvtrN 38192
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 14-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemef50.b 𝐵 = (Base‘𝐾)
cdlemef50.l = (le‘𝐾)
cdlemef50.j = (join‘𝐾)
cdlemef50.m = (meet‘𝐾)
cdlemef50.a 𝐴 = (Atoms‘𝐾)
cdlemef50.h 𝐻 = (LHyp‘𝐾)
cdlemef50.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef50.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs50.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef50.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdleme50ltrn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleme51finvtrN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑡)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐸(𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)

Proof of Theorem cdleme51finvtrN
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemef50.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemef50.l . . 3 = (le‘𝐾)
3 cdlemef50.j . . 3 = (join‘𝐾)
4 cdlemef50.m . . 3 = (meet‘𝐾)
5 cdlemef50.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdlemef50.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdlemef50.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdlemef50.d . . 3 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
9 cdlemefs50.e . . 3 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
10 cdlemef50.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
11 eqid 2738 . . 3 ((𝑄 𝑃) 𝑊) = ((𝑄 𝑃) 𝑊)
12 eqid 2738 . . 3 ((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊))) = ((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊)))
13 eqid 2738 . . 3 ((𝑄 𝑃) (((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊))) ((𝑢 𝑣) 𝑊))) = ((𝑄 𝑃) (((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊))) ((𝑢 𝑣) 𝑊)))
14 eqid 2738 . . 3 (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = ((𝑄 𝑃) (((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊))) ((𝑢 𝑣) 𝑊))))), 𝑢 / 𝑣((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊)))) (𝑎 𝑊)))), 𝑎)) = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = ((𝑄 𝑃) (((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊))) ((𝑢 𝑣) 𝑊))))), 𝑢 / 𝑣((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊)))) (𝑎 𝑊)))), 𝑎))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdleme51finvN 38190 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = ((𝑄 𝑃) (((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊))) ((𝑢 𝑣) 𝑊))))), 𝑢 / 𝑣((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊)))) (𝑎 𝑊)))), 𝑎)))
16 cdleme50ltrn.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
171, 2, 3, 4, 5, 6, 11, 12, 13, 14, 16cdleme50ltrn 38191 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = ((𝑄 𝑃) (((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊))) ((𝑢 𝑣) 𝑊))))), 𝑢 / 𝑣((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊)))) (𝑎 𝑊)))), 𝑎)) ∈ 𝑇)
18173com23 1127 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = ((𝑄 𝑃) (((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊))) ((𝑢 𝑣) 𝑊))))), 𝑢 / 𝑣((𝑣 ((𝑄 𝑃) 𝑊)) (𝑃 ((𝑄 𝑣) 𝑊)))) (𝑎 𝑊)))), 𝑎)) ∈ 𝑇)
1915, 18eqeltrd 2833 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wral 3053  csb 3791  ifcif 4415   class class class wbr 5031  cmpt 5111  ccnv 5525  cfv 6340  crio 7127  (class class class)co 7171  Basecbs 16587  lecple 16676  joincjn 17671  meetcmee 17672  Atomscatm 36897  HLchlt 36984  LHypclh 37618  LTrncltrn 37735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-riotaBAD 36587
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-1st 7715  df-2nd 7716  df-undef 7969  df-map 8440  df-proset 17655  df-poset 17673  df-plt 17685  df-lub 17701  df-glb 17702  df-join 17703  df-meet 17704  df-p0 17766  df-p1 17767  df-lat 17773  df-clat 17835  df-oposet 36810  df-ol 36812  df-oml 36813  df-covers 36900  df-ats 36901  df-atl 36932  df-cvlat 36956  df-hlat 36985  df-llines 37132  df-lplanes 37133  df-lvols 37134  df-lines 37135  df-psubsp 37137  df-pmap 37138  df-padd 37430  df-lhyp 37622  df-laut 37623  df-ldil 37738  df-ltrn 37739
This theorem is referenced by:  cdlemg1finvtrlemN  38209
  Copyright terms: Public domain W3C validator