Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50ex Structured version   Visualization version   GIF version

Theorem cdleme50ex 38135
Description: Part of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdleme.l = (le‘𝐾)
cdleme.a 𝐴 = (Atoms‘𝐾)
cdleme.h 𝐻 = (LHyp‘𝐾)
cdleme.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleme50ex (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃𝑓𝑇 (𝑓𝑃) = 𝑄)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐻(𝑓)

Proof of Theorem cdleme50ex
Dummy variables 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 cdleme.l . . 3 = (le‘𝐾)
3 eqid 2758 . . 3 (join‘𝐾) = (join‘𝐾)
4 eqid 2758 . . 3 (meet‘𝐾) = (meet‘𝐾)
5 cdleme.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdleme.h . . 3 𝐻 = (LHyp‘𝐾)
7 eqid 2758 . . 3 ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊)
8 eqid 2758 . . 3 ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))
9 eqid 2758 . . 3 ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))
10 eqid 2758 . . 3 (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))
11 cdleme.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme50ltrn 38133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) ∈ 𝑇)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme17d 38074 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))‘𝑃) = 𝑄)
14 fveq1 6657 . . . 4 (𝑓 = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) → (𝑓𝑃) = ((𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))‘𝑃))
1514eqeq1d 2760 . . 3 (𝑓 = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) → ((𝑓𝑃) = 𝑄 ↔ ((𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))‘𝑃) = 𝑄))
1615rspcev 3541 . 2 (((𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) ∈ 𝑇 ∧ ((𝑥 ∈ (Base‘𝐾) ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃(join‘𝐾)𝑄), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), 𝑠 / 𝑡((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥))‘𝑃) = 𝑄) → ∃𝑓𝑇 (𝑓𝑃) = 𝑄)
1712, 13, 16syl2anc 587 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃𝑓𝑇 (𝑓𝑃) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  csb 3805  ifcif 4420   class class class wbr 5032  cmpt 5112  cfv 6335  crio 7107  (class class class)co 7150  Basecbs 16541  lecple 16630  joincjn 17620  meetcmee 17621  Atomscatm 36839  HLchlt 36926  LHypclh 37560  LTrncltrn 37677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-riotaBAD 36529
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-undef 7949  df-map 8418  df-proset 17604  df-poset 17622  df-plt 17634  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-p0 17715  df-p1 17716  df-lat 17722  df-clat 17784  df-oposet 36752  df-ol 36754  df-oml 36755  df-covers 36842  df-ats 36843  df-atl 36874  df-cvlat 36898  df-hlat 36927  df-llines 37074  df-lplanes 37075  df-lvols 37076  df-lines 37077  df-psubsp 37079  df-pmap 37080  df-padd 37372  df-lhyp 37564  df-laut 37565  df-ldil 37680  df-ltrn 37681
This theorem is referenced by:  cdleme  38136  cdlemf  38139  dia2dimlem6  38645
  Copyright terms: Public domain W3C validator