| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg1fvawlemN | Structured version Visualization version GIF version | ||
| Description: Lemma for ltrniotafvawN 40579. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdlemg1.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemg1.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg1.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg1.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemg1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdlemg1.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg1.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg1.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| cdlemg1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemg1.f | ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
| Ref | Expression |
|---|---|
| cdlemg1fvawlemN | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐹‘𝑅) ∈ 𝐴 ∧ ¬ (𝐹‘𝑅) ≤ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemg1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemg1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemg1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | cdlemg1.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 5 | cdlemg1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemg1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemg1.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 8 | cdlemg1.d | . . 3 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 9 | cdlemg1.e | . . 3 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 10 | cdlemg1.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme46fvaw 40502 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐺‘𝑅) ∈ 𝐴 ∧ ¬ (𝐺‘𝑅) ≤ 𝑊)) |
| 12 | cdlemg1.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 13 | cdlemg1.f | . . . . . . 7 ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13 | cdlemg1b2 40572 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 = 𝐺) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐹 = 𝐺) |
| 16 | 15 | fveq1d 6863 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐹‘𝑅) = (𝐺‘𝑅)) |
| 17 | 16 | eleq1d 2814 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐹‘𝑅) ∈ 𝐴 ↔ (𝐺‘𝑅) ∈ 𝐴)) |
| 18 | 16 | breq1d 5120 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐹‘𝑅) ≤ 𝑊 ↔ (𝐺‘𝑅) ≤ 𝑊)) |
| 19 | 18 | notbid 318 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (¬ (𝐹‘𝑅) ≤ 𝑊 ↔ ¬ (𝐺‘𝑅) ≤ 𝑊)) |
| 20 | 17, 19 | anbi12d 632 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (((𝐹‘𝑅) ∈ 𝐴 ∧ ¬ (𝐹‘𝑅) ≤ 𝑊) ↔ ((𝐺‘𝑅) ∈ 𝐴 ∧ ¬ (𝐺‘𝑅) ≤ 𝑊))) |
| 21 | 11, 20 | mpbird 257 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐹‘𝑅) ∈ 𝐴 ∧ ¬ (𝐹‘𝑅) ≤ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⦋csb 3865 ifcif 4491 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 Basecbs 17186 lecple 17234 joincjn 18279 meetcmee 18280 Atomscatm 39263 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-undef 8255 df-map 8804 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 |
| This theorem is referenced by: ltrniotafvawN 40579 |
| Copyright terms: Public domain | W3C validator |