Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg26zz | Structured version Visualization version GIF version |
Description: cdlemg16zz 38700 restated for easier studying. TODO: Discard this after everything is figured out. (Contributed by NM, 26-May-2013.) |
Ref | Expression |
---|---|
cdlemg12.l | ⊢ ≤ = (le‘𝐾) |
cdlemg12.j | ⊢ ∨ = (join‘𝐾) |
cdlemg12.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg12.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg12.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg12b.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg26zz | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ (𝑅‘𝐹) ≤ (𝑄 ∨ 𝑧) ∧ ¬ (𝑅‘𝐺) ≤ (𝑄 ∨ 𝑧))) → ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊) = ((𝑧 ∨ (𝐹‘(𝐺‘𝑧))) ∧ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg12.l | . 2 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemg12.j | . 2 ⊢ ∨ = (join‘𝐾) | |
3 | cdlemg12.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | cdlemg12.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemg12.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemg12.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | cdlemg12b.r | . 2 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | cdlemg25zz 38730 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ (𝑅‘𝐹) ≤ (𝑄 ∨ 𝑧) ∧ ¬ (𝑅‘𝐺) ≤ (𝑄 ∨ 𝑧))) → ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊) = ((𝑧 ∨ (𝐹‘(𝐺‘𝑧))) ∧ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 lecple 16997 joincjn 18057 meetcmee 18058 Atomscatm 37303 HLchlt 37390 LHypclh 38024 LTrncltrn 38141 trLctrl 38198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-riotaBAD 36993 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-1st 7851 df-2nd 7852 df-undef 8109 df-map 8637 df-proset 18041 df-poset 18059 df-plt 18076 df-lub 18092 df-glb 18093 df-join 18094 df-meet 18095 df-p0 18171 df-p1 18172 df-lat 18178 df-clat 18245 df-oposet 37216 df-ol 37218 df-oml 37219 df-covers 37306 df-ats 37307 df-atl 37338 df-cvlat 37362 df-hlat 37391 df-llines 37538 df-lplanes 37539 df-lvols 37540 df-lines 37541 df-psubsp 37543 df-pmap 37544 df-padd 37836 df-lhyp 38028 df-laut 38029 df-ldil 38144 df-ltrn 38145 df-trl 38199 |
This theorem is referenced by: cdlemg28b 38743 |
Copyright terms: Public domain | W3C validator |