Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg4g | Structured version Visualization version GIF version |
Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg4.l | ⊢ ≤ = (le‘𝐾) |
cdlemg4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg4.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg4.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemg4.j | ⊢ ∨ = (join‘𝐾) |
cdlemg4b.v | ⊢ 𝑉 = (𝑅‘𝐺) |
cdlemg4.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
cdlemg4g | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = ((𝑄 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg4.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemg4.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | cdlemg4.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdlemg4.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | cdlemg4.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | cdlemg4.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | cdlemg4b.v | . . 3 ⊢ 𝑉 = (𝑅‘𝐺) | |
8 | cdlemg4.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdlemg4f 38225 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = ((𝑄 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
10 | simp1l 1194 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝐾 ∈ HL) | |
11 | simp1r 1195 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑊 ∈ 𝐻) | |
12 | simp21 1203 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
13 | simp22l 1289 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑄 ∈ 𝐴) | |
14 | eqid 2758 | . . . . 5 ⊢ ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
15 | 1, 6, 8, 2, 3, 14 | cdleme0cp 37824 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = (𝑃 ∨ 𝑄)) |
16 | 10, 11, 12, 13, 15 | syl22anc 837 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = (𝑃 ∨ 𝑄)) |
17 | 16 | oveq2d 7172 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ((𝑄 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) = ((𝑄 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄))) |
18 | 9, 17 | eqtrd 2793 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = ((𝑄 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 lecple 16643 joincjn 17633 meetcmee 17634 Atomscatm 36873 HLchlt 36960 LHypclh 37594 LTrncltrn 37711 trLctrl 37768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-riotaBAD 36563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-undef 7955 df-map 8424 df-proset 17617 df-poset 17635 df-plt 17647 df-lub 17663 df-glb 17664 df-join 17665 df-meet 17666 df-p0 17728 df-p1 17729 df-lat 17735 df-clat 17797 df-oposet 36786 df-ol 36788 df-oml 36789 df-covers 36876 df-ats 36877 df-atl 36908 df-cvlat 36932 df-hlat 36961 df-llines 37108 df-lplanes 37109 df-lvols 37110 df-lines 37111 df-psubsp 37113 df-pmap 37114 df-padd 37406 df-lhyp 37598 df-laut 37599 df-ldil 37714 df-ltrn 37715 df-trl 37769 |
This theorem is referenced by: cdlemg4 38227 |
Copyright terms: Public domain | W3C validator |