Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg8d | Structured version Visualization version GIF version |
Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg8.l | ⊢ ≤ = (le‘𝐾) |
cdlemg8.j | ⊢ ∨ = (join‘𝐾) |
cdlemg8.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg8d | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg8.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemg8.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | cdlemg8.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | cdlemg8.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemg8.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemg8.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | cdlemg8b 38889 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑃 ∨ (𝐹‘(𝐺‘𝑃))) = (𝑃 ∨ 𝑄)) |
8 | 1, 2, 3, 4, 5, 6 | cdlemg8c 38890 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑄 ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) |
9 | 7, 8 | eqtr4d 2779 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑃 ∨ (𝐹‘(𝐺‘𝑃))) = (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) |
10 | 9 | oveq1d 7344 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 lecple 17058 joincjn 18118 meetcmee 18119 Atomscatm 37523 HLchlt 37610 LHypclh 38245 LTrncltrn 38362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-riotaBAD 37213 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-undef 8151 df-map 8680 df-proset 18102 df-poset 18120 df-plt 18137 df-lub 18153 df-glb 18154 df-join 18155 df-meet 18156 df-p0 18232 df-p1 18233 df-lat 18239 df-clat 18306 df-oposet 37436 df-ol 37438 df-oml 37439 df-covers 37526 df-ats 37527 df-atl 37558 df-cvlat 37582 df-hlat 37611 df-llines 37759 df-lplanes 37760 df-lvols 37761 df-lines 37762 df-psubsp 37764 df-pmap 37765 df-padd 38057 df-lhyp 38249 df-laut 38250 df-ldil 38365 df-ltrn 38366 df-trl 38420 |
This theorem is referenced by: cdlemg8 38892 |
Copyright terms: Public domain | W3C validator |