MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreim2 Structured version   Visualization version   GIF version

Theorem cjreim2 15148
Description: The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
cjreim2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (โˆ—โ€˜(๐ด โˆ’ (i ยท ๐ต))) = (๐ด + (i ยท ๐ต)))

Proof of Theorem cjreim2
StepHypRef Expression
1 cjreim 15147 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (โˆ—โ€˜(๐ด + (i ยท ๐ต))) = (๐ด โˆ’ (i ยท ๐ต)))
21fveq2d 6906 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (โˆ—โ€˜(โˆ—โ€˜(๐ด + (i ยท ๐ต)))) = (โˆ—โ€˜(๐ด โˆ’ (i ยท ๐ต))))
3 simpl 481 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ๐ด โˆˆ โ„)
43recnd 11280 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ๐ด โˆˆ โ„‚)
5 ax-icn 11205 . . . . . 6 i โˆˆ โ„‚
65a1i 11 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ i โˆˆ โ„‚)
7 simpr 483 . . . . . 6 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ๐ต โˆˆ โ„)
87recnd 11280 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ๐ต โˆˆ โ„‚)
96, 8mulcld 11272 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (i ยท ๐ต) โˆˆ โ„‚)
104, 9addcld 11271 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด + (i ยท ๐ต)) โˆˆ โ„‚)
11 cjcj 15127 . . 3 ((๐ด + (i ยท ๐ต)) โˆˆ โ„‚ โ†’ (โˆ—โ€˜(โˆ—โ€˜(๐ด + (i ยท ๐ต)))) = (๐ด + (i ยท ๐ต)))
1210, 11syl 17 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (โˆ—โ€˜(โˆ—โ€˜(๐ด + (i ยท ๐ต)))) = (๐ด + (i ยท ๐ต)))
132, 12eqtr3d 2770 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (โˆ—โ€˜(๐ด โˆ’ (i ยท ๐ต))) = (๐ด + (i ยท ๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 394   = wceq 1533   โˆˆ wcel 2098  โ€˜cfv 6553  (class class class)co 7426  โ„‚cc 11144  โ„cr 11145  ici 11148   + caddc 11149   ยท cmul 11151   โˆ’ cmin 11482  โˆ—ccj 15083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-2 12313  df-cj 15086  df-re 15087  df-im 15088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator