![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjreim | Structured version Visualization version GIF version |
Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) |
Ref | Expression |
---|---|
cjreim | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11248 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | ax-icn 11217 | . . . 4 ⊢ i ∈ ℂ | |
3 | recn 11248 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
4 | mulcl 11242 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ) | |
5 | 2, 3, 4 | sylancr 585 | . . 3 ⊢ (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ) |
6 | cjadd 15146 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵)))) | |
7 | 1, 5, 6 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵)))) |
8 | cjre 15144 | . . 3 ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | |
9 | cjmul 15147 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵))) | |
10 | 2, 3, 9 | sylancr 585 | . . . 4 ⊢ (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵))) |
11 | cji 15164 | . . . . . 6 ⊢ (∗‘i) = -i | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (∗‘i) = -i) |
13 | cjre 15144 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (∗‘𝐵) = 𝐵) | |
14 | 12, 13 | oveq12d 7442 | . . . 4 ⊢ (𝐵 ∈ ℝ → ((∗‘i) · (∗‘𝐵)) = (-i · 𝐵)) |
15 | mulneg1 11700 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) = -(i · 𝐵)) | |
16 | 2, 3, 15 | sylancr 585 | . . . 4 ⊢ (𝐵 ∈ ℝ → (-i · 𝐵) = -(i · 𝐵)) |
17 | 10, 14, 16 | 3eqtrd 2770 | . . 3 ⊢ (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = -(i · 𝐵)) |
18 | 8, 17 | oveqan12d 7443 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((∗‘𝐴) + (∗‘(i · 𝐵))) = (𝐴 + -(i · 𝐵))) |
19 | negsub 11558 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵))) | |
20 | 1, 5, 19 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵))) |
21 | 7, 18, 20 | 3eqtrd 2770 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 ℝcr 11157 ici 11160 + caddc 11161 · cmul 11163 − cmin 11494 -cneg 11495 ∗ccj 15101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-2 12327 df-cj 15104 df-re 15105 df-im 15106 |
This theorem is referenced by: cjreim2 15166 dipcj 30647 lnophmlem2 31950 |
Copyright terms: Public domain | W3C validator |