| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cjreim | Structured version Visualization version GIF version | ||
| Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) |
| Ref | Expression |
|---|---|
| cjreim | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 11091 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 2 | ax-icn 11060 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | recn 11091 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 4 | mulcl 11085 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ) | |
| 5 | 2, 3, 4 | sylancr 587 | . . 3 ⊢ (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ) |
| 6 | cjadd 15043 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵)))) | |
| 7 | 1, 5, 6 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵)))) |
| 8 | cjre 15041 | . . 3 ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | |
| 9 | cjmul 15044 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵))) | |
| 10 | 2, 3, 9 | sylancr 587 | . . . 4 ⊢ (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵))) |
| 11 | cji 15061 | . . . . . 6 ⊢ (∗‘i) = -i | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (∗‘i) = -i) |
| 13 | cjre 15041 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (∗‘𝐵) = 𝐵) | |
| 14 | 12, 13 | oveq12d 7359 | . . . 4 ⊢ (𝐵 ∈ ℝ → ((∗‘i) · (∗‘𝐵)) = (-i · 𝐵)) |
| 15 | mulneg1 11548 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) = -(i · 𝐵)) | |
| 16 | 2, 3, 15 | sylancr 587 | . . . 4 ⊢ (𝐵 ∈ ℝ → (-i · 𝐵) = -(i · 𝐵)) |
| 17 | 10, 14, 16 | 3eqtrd 2770 | . . 3 ⊢ (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = -(i · 𝐵)) |
| 18 | 8, 17 | oveqan12d 7360 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((∗‘𝐴) + (∗‘(i · 𝐵))) = (𝐴 + -(i · 𝐵))) |
| 19 | negsub 11404 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵))) | |
| 20 | 1, 5, 19 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵))) |
| 21 | 7, 18, 20 | 3eqtrd 2770 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 ici 11003 + caddc 11004 · cmul 11006 − cmin 11339 -cneg 11340 ∗ccj 14998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-cj 15001 df-re 15002 df-im 15003 |
| This theorem is referenced by: cjreim2 15063 dipcj 30686 lnophmlem2 31989 |
| Copyright terms: Public domain | W3C validator |