MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreim Structured version   Visualization version   GIF version

Theorem cjreim 14947
Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
Assertion
Ref Expression
cjreim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵)))

Proof of Theorem cjreim
StepHypRef Expression
1 recn 11040 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 11009 . . . 4 i ∈ ℂ
3 recn 11040 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 11034 . . . 4 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 587 . . 3 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 cjadd 14928 . . 3 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵))))
71, 5, 6syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵))))
8 cjre 14926 . . 3 (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
9 cjmul 14929 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵)))
102, 3, 9sylancr 587 . . . 4 (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵)))
11 cji 14946 . . . . . 6 (∗‘i) = -i
1211a1i 11 . . . . 5 (𝐵 ∈ ℝ → (∗‘i) = -i)
13 cjre 14926 . . . . 5 (𝐵 ∈ ℝ → (∗‘𝐵) = 𝐵)
1412, 13oveq12d 7334 . . . 4 (𝐵 ∈ ℝ → ((∗‘i) · (∗‘𝐵)) = (-i · 𝐵))
15 mulneg1 11490 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) = -(i · 𝐵))
162, 3, 15sylancr 587 . . . 4 (𝐵 ∈ ℝ → (-i · 𝐵) = -(i · 𝐵))
1710, 14, 163eqtrd 2780 . . 3 (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = -(i · 𝐵))
188, 17oveqan12d 7335 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((∗‘𝐴) + (∗‘(i · 𝐵))) = (𝐴 + -(i · 𝐵)))
19 negsub 11348 . . 3 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵)))
201, 5, 19syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵)))
217, 18, 203eqtrd 2780 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cfv 6465  (class class class)co 7316  cc 10948  cr 10949  ici 10952   + caddc 10953   · cmul 10955  cmin 11284  -cneg 11285  ccj 14883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-po 5520  df-so 5521  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-2 12115  df-cj 14886  df-re 14887  df-im 14888
This theorem is referenced by:  cjreim2  14948  dipcj  29208  lnophmlem2  30511
  Copyright terms: Public domain W3C validator