MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreim Structured version   Visualization version   GIF version

Theorem cjreim 15165
Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
Assertion
Ref Expression
cjreim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵)))

Proof of Theorem cjreim
StepHypRef Expression
1 recn 11248 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 11217 . . . 4 i ∈ ℂ
3 recn 11248 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 11242 . . . 4 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 585 . . 3 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 cjadd 15146 . . 3 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵))))
71, 5, 6syl2an 594 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵))))
8 cjre 15144 . . 3 (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
9 cjmul 15147 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵)))
102, 3, 9sylancr 585 . . . 4 (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵)))
11 cji 15164 . . . . . 6 (∗‘i) = -i
1211a1i 11 . . . . 5 (𝐵 ∈ ℝ → (∗‘i) = -i)
13 cjre 15144 . . . . 5 (𝐵 ∈ ℝ → (∗‘𝐵) = 𝐵)
1412, 13oveq12d 7442 . . . 4 (𝐵 ∈ ℝ → ((∗‘i) · (∗‘𝐵)) = (-i · 𝐵))
15 mulneg1 11700 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) = -(i · 𝐵))
162, 3, 15sylancr 585 . . . 4 (𝐵 ∈ ℝ → (-i · 𝐵) = -(i · 𝐵))
1710, 14, 163eqtrd 2770 . . 3 (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = -(i · 𝐵))
188, 17oveqan12d 7443 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((∗‘𝐴) + (∗‘(i · 𝐵))) = (𝐴 + -(i · 𝐵)))
19 negsub 11558 . . 3 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵)))
201, 5, 19syl2an 594 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵)))
217, 18, 203eqtrd 2770 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  ici 11160   + caddc 11161   · cmul 11163  cmin 11494  -cneg 11495  ccj 15101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-2 12327  df-cj 15104  df-re 15105  df-im 15106
This theorem is referenced by:  cjreim2  15166  dipcj  30647  lnophmlem2  31950
  Copyright terms: Public domain W3C validator