MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjcj Structured version   Visualization version   GIF version

Theorem cjcj 15120
Description: The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjcj (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴)

Proof of Theorem cjcj
StepHypRef Expression
1 cjcl 15085 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
2 recj 15104 . . . . 5 ((∗‘𝐴) ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴)))
31, 2syl 17 . . . 4 (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴)))
4 recj 15104 . . . 4 (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴))
53, 4eqtrd 2768 . . 3 (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘𝐴))
6 imcj 15112 . . . . . 6 ((∗‘𝐴) ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴)))
71, 6syl 17 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴)))
8 imcj 15112 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
98negeqd 11485 . . . . . 6 (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = --(ℑ‘𝐴))
10 imcl 15091 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1110recnd 11273 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
1211negnegd 11593 . . . . . 6 (𝐴 ∈ ℂ → --(ℑ‘𝐴) = (ℑ‘𝐴))
139, 12eqtrd 2768 . . . . 5 (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = (ℑ‘𝐴))
147, 13eqtrd 2768 . . . 4 (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = (ℑ‘𝐴))
1514oveq2d 7436 . . 3 (𝐴 ∈ ℂ → (i · (ℑ‘(∗‘(∗‘𝐴)))) = (i · (ℑ‘𝐴)))
165, 15oveq12d 7438 . 2 (𝐴 ∈ ℂ → ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
17 cjcl 15085 . . 3 ((∗‘𝐴) ∈ ℂ → (∗‘(∗‘𝐴)) ∈ ℂ)
18 replim 15096 . . 3 ((∗‘(∗‘𝐴)) ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴))))))
191, 17, 183syl 18 . 2 (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴))))))
20 replim 15096 . 2 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2116, 19, 203eqtr4d 2778 1 (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  cc 11137  ici 11141   + caddc 11142   · cmul 11144  -cneg 11476  ccj 15076  cre 15077  cim 15078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-2 12306  df-cj 15079  df-re 15080  df-im 15081
This theorem is referenced by:  cjmulrcl  15124  cjreim2  15141  cj11  15142  cjcji  15151  cjcjd  15179  abscj  15259  sqabsadd  15262  sqabssub  15263  cnsrng  21333  plycjlem  26224  dipassr2  30670  his52  30910  cnvbramul  31938
  Copyright terms: Public domain W3C validator