MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjcj Structured version   Visualization version   GIF version

Theorem cjcj 14779
Description: The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjcj (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴)

Proof of Theorem cjcj
StepHypRef Expression
1 cjcl 14744 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
2 recj 14763 . . . . 5 ((∗‘𝐴) ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴)))
31, 2syl 17 . . . 4 (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘(∗‘𝐴)))
4 recj 14763 . . . 4 (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴))
53, 4eqtrd 2778 . . 3 (𝐴 ∈ ℂ → (ℜ‘(∗‘(∗‘𝐴))) = (ℜ‘𝐴))
6 imcj 14771 . . . . . 6 ((∗‘𝐴) ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴)))
71, 6syl 17 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = -(ℑ‘(∗‘𝐴)))
8 imcj 14771 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
98negeqd 11145 . . . . . 6 (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = --(ℑ‘𝐴))
10 imcl 14750 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1110recnd 10934 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
1211negnegd 11253 . . . . . 6 (𝐴 ∈ ℂ → --(ℑ‘𝐴) = (ℑ‘𝐴))
139, 12eqtrd 2778 . . . . 5 (𝐴 ∈ ℂ → -(ℑ‘(∗‘𝐴)) = (ℑ‘𝐴))
147, 13eqtrd 2778 . . . 4 (𝐴 ∈ ℂ → (ℑ‘(∗‘(∗‘𝐴))) = (ℑ‘𝐴))
1514oveq2d 7271 . . 3 (𝐴 ∈ ℂ → (i · (ℑ‘(∗‘(∗‘𝐴)))) = (i · (ℑ‘𝐴)))
165, 15oveq12d 7273 . 2 (𝐴 ∈ ℂ → ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
17 cjcl 14744 . . 3 ((∗‘𝐴) ∈ ℂ → (∗‘(∗‘𝐴)) ∈ ℂ)
18 replim 14755 . . 3 ((∗‘(∗‘𝐴)) ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴))))))
191, 17, 183syl 18 . 2 (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = ((ℜ‘(∗‘(∗‘𝐴))) + (i · (ℑ‘(∗‘(∗‘𝐴))))))
20 replim 14755 . 2 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2116, 19, 203eqtr4d 2788 1 (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  ici 10804   + caddc 10805   · cmul 10807  -cneg 11136  ccj 14735  cre 14736  cim 14737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740
This theorem is referenced by:  cjmulrcl  14783  cjreim2  14800  cj11  14801  cjcji  14810  cjcjd  14838  abscj  14919  sqabsadd  14922  sqabssub  14923  cnsrng  20544  plycjlem  25342  dipassr2  29110  his52  29350  cnvbramul  30378
  Copyright terms: Public domain W3C validator