![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjcj | Structured version Visualization version GIF version |
Description: The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjcj | โข (๐ด โ โ โ (โโ(โโ๐ด)) = ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 15078 | . . . . 5 โข (๐ด โ โ โ (โโ๐ด) โ โ) | |
2 | recj 15097 | . . . . 5 โข ((โโ๐ด) โ โ โ (โโ(โโ(โโ๐ด))) = (โโ(โโ๐ด))) | |
3 | 1, 2 | syl 17 | . . . 4 โข (๐ด โ โ โ (โโ(โโ(โโ๐ด))) = (โโ(โโ๐ด))) |
4 | recj 15097 | . . . 4 โข (๐ด โ โ โ (โโ(โโ๐ด)) = (โโ๐ด)) | |
5 | 3, 4 | eqtrd 2768 | . . 3 โข (๐ด โ โ โ (โโ(โโ(โโ๐ด))) = (โโ๐ด)) |
6 | imcj 15105 | . . . . . 6 โข ((โโ๐ด) โ โ โ (โโ(โโ(โโ๐ด))) = -(โโ(โโ๐ด))) | |
7 | 1, 6 | syl 17 | . . . . 5 โข (๐ด โ โ โ (โโ(โโ(โโ๐ด))) = -(โโ(โโ๐ด))) |
8 | imcj 15105 | . . . . . . 7 โข (๐ด โ โ โ (โโ(โโ๐ด)) = -(โโ๐ด)) | |
9 | 8 | negeqd 11478 | . . . . . 6 โข (๐ด โ โ โ -(โโ(โโ๐ด)) = --(โโ๐ด)) |
10 | imcl 15084 | . . . . . . . 8 โข (๐ด โ โ โ (โโ๐ด) โ โ) | |
11 | 10 | recnd 11266 | . . . . . . 7 โข (๐ด โ โ โ (โโ๐ด) โ โ) |
12 | 11 | negnegd 11586 | . . . . . 6 โข (๐ด โ โ โ --(โโ๐ด) = (โโ๐ด)) |
13 | 9, 12 | eqtrd 2768 | . . . . 5 โข (๐ด โ โ โ -(โโ(โโ๐ด)) = (โโ๐ด)) |
14 | 7, 13 | eqtrd 2768 | . . . 4 โข (๐ด โ โ โ (โโ(โโ(โโ๐ด))) = (โโ๐ด)) |
15 | 14 | oveq2d 7430 | . . 3 โข (๐ด โ โ โ (i ยท (โโ(โโ(โโ๐ด)))) = (i ยท (โโ๐ด))) |
16 | 5, 15 | oveq12d 7432 | . 2 โข (๐ด โ โ โ ((โโ(โโ(โโ๐ด))) + (i ยท (โโ(โโ(โโ๐ด))))) = ((โโ๐ด) + (i ยท (โโ๐ด)))) |
17 | cjcl 15078 | . . 3 โข ((โโ๐ด) โ โ โ (โโ(โโ๐ด)) โ โ) | |
18 | replim 15089 | . . 3 โข ((โโ(โโ๐ด)) โ โ โ (โโ(โโ๐ด)) = ((โโ(โโ(โโ๐ด))) + (i ยท (โโ(โโ(โโ๐ด)))))) | |
19 | 1, 17, 18 | 3syl 18 | . 2 โข (๐ด โ โ โ (โโ(โโ๐ด)) = ((โโ(โโ(โโ๐ด))) + (i ยท (โโ(โโ(โโ๐ด)))))) |
20 | replim 15089 | . 2 โข (๐ด โ โ โ ๐ด = ((โโ๐ด) + (i ยท (โโ๐ด)))) | |
21 | 16, 19, 20 | 3eqtr4d 2778 | 1 โข (๐ด โ โ โ (โโ(โโ๐ด)) = ๐ด) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1534 โ wcel 2099 โcfv 6542 (class class class)co 7414 โcc 11130 ici 11134 + caddc 11135 ยท cmul 11137 -cneg 11469 โccj 15069 โcre 15070 โcim 15071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-2 12299 df-cj 15072 df-re 15073 df-im 15074 |
This theorem is referenced by: cjmulrcl 15117 cjreim2 15134 cj11 15135 cjcji 15144 cjcjd 15172 abscj 15252 sqabsadd 15255 sqabssub 15256 cnsrng 21326 plycjlem 26204 dipassr2 30650 his52 30890 cnvbramul 31918 |
Copyright terms: Public domain | W3C validator |