MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkp Structured version   Visualization version   GIF version

Theorem cnmptkp 23567
Description: The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptkp.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptkp.b (𝜑𝐵𝑌)
cnmptkp.c (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
cnmptkp (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑍,𝑦   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑦,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem cnmptkp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2 cnmptkp.c . . . 4 (𝑦 = 𝐵𝐴 = 𝐶)
3 cnmptkp.b . . . . 5 (𝜑𝐵𝑌)
43adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑌)
52eleq1d 2813 . . . . 5 (𝑦 = 𝐵 → (𝐴 𝐿𝐶 𝐿))
6 cnmptk1.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
76adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
8 cnmptk1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑍))
9 topontop 22800 . . . . . . . . . 10 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐿 ∈ Top)
12 toptopon2 22805 . . . . . . . 8 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1311, 12sylib 218 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘ 𝐿))
14 cnmptk1.j . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 topontop 22800 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
166, 15syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ Top)
17 eqid 2729 . . . . . . . . . . 11 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1817xkotopon 23487 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
1916, 10, 18syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
20 cnmptkp.a . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
21 cnf2 23136 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2214, 19, 20, 21syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2322fvmptelcdm 7085 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
24 cnf2 23136 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌 𝐿)
257, 13, 23, 24syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌 𝐿)
261fmpt 7082 . . . . . 6 (∀𝑦𝑌 𝐴 𝐿 ↔ (𝑦𝑌𝐴):𝑌 𝐿)
2725, 26sylibr 234 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 𝐿)
285, 27, 4rspcdva 3589 . . . 4 ((𝜑𝑥𝑋) → 𝐶 𝐿)
291, 2, 4, 28fvmptd3 6991 . . 3 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
3029mpteq2dva 5200 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) = (𝑥𝑋𝐶))
31 toponuni 22801 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
326, 31syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
333, 32eleqtrd 2830 . . . 4 (𝜑𝐵 𝐾)
34 eqid 2729 . . . . 5 𝐾 = 𝐾
3534xkopjcn 23543 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝐵 𝐾) → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿ko 𝐾) Cn 𝐿))
3616, 10, 33, 35syl3anc 1373 . . 3 (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿ko 𝐾) Cn 𝐿))
37 fveq1 6857 . . 3 (𝑤 = (𝑦𝑌𝐴) → (𝑤𝐵) = ((𝑦𝑌𝐴)‘𝐵))
3814, 20, 19, 36, 37cnmpt11 23550 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿))
3930, 38eqeltrrd 2829 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   cuni 4871  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  Topctop 22780  TopOnctopon 22797   Cn ccn 23111  ko cxko 23448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-pt 17407  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-cmp 23274  df-xko 23450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator