MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkp Structured version   Visualization version   GIF version

Theorem cnmptkp 23618
Description: The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptkp.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptkp.b (𝜑𝐵𝑌)
cnmptkp.c (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
cnmptkp (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑍,𝑦   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑦,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem cnmptkp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2 cnmptkp.c . . . 4 (𝑦 = 𝐵𝐴 = 𝐶)
3 cnmptkp.b . . . . 5 (𝜑𝐵𝑌)
43adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑌)
52eleq1d 2819 . . . . 5 (𝑦 = 𝐵 → (𝐴 𝐿𝐶 𝐿))
6 cnmptk1.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
76adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
8 cnmptk1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑍))
9 topontop 22851 . . . . . . . . . 10 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐿 ∈ Top)
12 toptopon2 22856 . . . . . . . 8 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1311, 12sylib 218 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘ 𝐿))
14 cnmptk1.j . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 topontop 22851 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
166, 15syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ Top)
17 eqid 2735 . . . . . . . . . . 11 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1817xkotopon 23538 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
1916, 10, 18syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
20 cnmptkp.a . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
21 cnf2 23187 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2214, 19, 20, 21syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2322fvmptelcdm 7103 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
24 cnf2 23187 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌 𝐿)
257, 13, 23, 24syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌 𝐿)
261fmpt 7100 . . . . . 6 (∀𝑦𝑌 𝐴 𝐿 ↔ (𝑦𝑌𝐴):𝑌 𝐿)
2725, 26sylibr 234 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 𝐿)
285, 27, 4rspcdva 3602 . . . 4 ((𝜑𝑥𝑋) → 𝐶 𝐿)
291, 2, 4, 28fvmptd3 7009 . . 3 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
3029mpteq2dva 5214 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) = (𝑥𝑋𝐶))
31 toponuni 22852 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
326, 31syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
333, 32eleqtrd 2836 . . . 4 (𝜑𝐵 𝐾)
34 eqid 2735 . . . . 5 𝐾 = 𝐾
3534xkopjcn 23594 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝐵 𝐾) → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿ko 𝐾) Cn 𝐿))
3616, 10, 33, 35syl3anc 1373 . . 3 (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿ko 𝐾) Cn 𝐿))
37 fveq1 6875 . . 3 (𝑤 = (𝑦𝑌𝐴) → (𝑤𝐵) = ((𝑦𝑌𝐴)‘𝐵))
3814, 20, 19, 36, 37cnmpt11 23601 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿))
3930, 38eqeltrrd 2835 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051   cuni 4883  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  Topctop 22831  TopOnctopon 22848   Cn ccn 23162  ko cxko 23499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-fin 8963  df-fi 9423  df-rest 17436  df-topgen 17457  df-pt 17458  df-top 22832  df-topon 22849  df-bases 22884  df-cn 23165  df-cmp 23325  df-xko 23501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator