| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2735 |
. . . 4
⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) |
| 2 | | cnmptkp.c |
. . . 4
⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) |
| 3 | | cnmptkp.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| 4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑌) |
| 5 | 2 | eleq1d 2819 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝐴 ∈ ∪ 𝐿 ↔ 𝐶 ∈ ∪ 𝐿)) |
| 6 | | cnmptk1.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 8 | | cnmptk1.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| 9 | | topontop 22851 |
. . . . . . . . . 10
⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ Top) |
| 11 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ Top) |
| 12 | | toptopon2 22856 |
. . . . . . . 8
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 13 | 11, 12 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 14 | | cnmptk1.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | | topontop 22851 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 16 | 6, 15 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Top) |
| 17 | | eqid 2735 |
. . . . . . . . . . 11
⊢ (𝐿 ↑ko 𝐾) = (𝐿 ↑ko 𝐾) |
| 18 | 17 | xkotopon 23538 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 19 | 16, 10, 18 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 20 | | cnmptkp.a |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) |
| 21 | | cnf2 23187 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
| 22 | 14, 19, 20, 21 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
| 23 | 22 | fvmptelcdm 7103 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| 24 | | cnf2 23187 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶∪ 𝐿) |
| 25 | 7, 13, 23, 24 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶∪ 𝐿) |
| 26 | 1 | fmpt 7100 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑌 𝐴 ∈ ∪ 𝐿 ↔ (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶∪ 𝐿) |
| 27 | 25, 26 | sylibr 234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿) |
| 28 | 5, 27, 4 | rspcdva 3602 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ∪ 𝐿) |
| 29 | 1, 2, 4, 28 | fvmptd3 7009 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵) = 𝐶) |
| 30 | 29 | mpteq2dva 5214 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
| 31 | | toponuni 22852 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
| 32 | 6, 31 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
| 33 | 3, 32 | eleqtrd 2836 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ∪ 𝐾) |
| 34 | | eqid 2735 |
. . . . 5
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 35 | 34 | xkopjcn 23594 |
. . . 4
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝐵 ∈ ∪ 𝐾)
→ (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤‘𝐵)) ∈ ((𝐿 ↑ko 𝐾) Cn 𝐿)) |
| 36 | 16, 10, 33, 35 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤‘𝐵)) ∈ ((𝐿 ↑ko 𝐾) Cn 𝐿)) |
| 37 | | fveq1 6875 |
. . 3
⊢ (𝑤 = (𝑦 ∈ 𝑌 ↦ 𝐴) → (𝑤‘𝐵) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) |
| 38 | 14, 20, 19, 36, 37 | cnmpt11 23601 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿)) |
| 39 | 30, 38 | eqeltrrd 2835 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) |