MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkp Structured version   Visualization version   GIF version

Theorem cnmptkp 23596
Description: The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptkp.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptkp.b (𝜑𝐵𝑌)
cnmptkp.c (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
cnmptkp (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑍,𝑦   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑦,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem cnmptkp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2 cnmptkp.c . . . 4 (𝑦 = 𝐵𝐴 = 𝐶)
3 cnmptkp.b . . . . 5 (𝜑𝐵𝑌)
43adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑌)
52eleq1d 2816 . . . . 5 (𝑦 = 𝐵 → (𝐴 𝐿𝐶 𝐿))
6 cnmptk1.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
76adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
8 cnmptk1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑍))
9 topontop 22829 . . . . . . . . . 10 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐿 ∈ Top)
12 toptopon2 22834 . . . . . . . 8 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1311, 12sylib 218 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘ 𝐿))
14 cnmptk1.j . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 topontop 22829 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
166, 15syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ Top)
17 eqid 2731 . . . . . . . . . . 11 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1817xkotopon 23516 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
1916, 10, 18syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
20 cnmptkp.a . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
21 cnf2 23165 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2214, 19, 20, 21syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2322fvmptelcdm 7046 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
24 cnf2 23165 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌 𝐿)
257, 13, 23, 24syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌 𝐿)
261fmpt 7043 . . . . . 6 (∀𝑦𝑌 𝐴 𝐿 ↔ (𝑦𝑌𝐴):𝑌 𝐿)
2725, 26sylibr 234 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 𝐿)
285, 27, 4rspcdva 3578 . . . 4 ((𝜑𝑥𝑋) → 𝐶 𝐿)
291, 2, 4, 28fvmptd3 6952 . . 3 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
3029mpteq2dva 5184 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) = (𝑥𝑋𝐶))
31 toponuni 22830 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
326, 31syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
333, 32eleqtrd 2833 . . . 4 (𝜑𝐵 𝐾)
34 eqid 2731 . . . . 5 𝐾 = 𝐾
3534xkopjcn 23572 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝐵 𝐾) → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿ko 𝐾) Cn 𝐿))
3616, 10, 33, 35syl3anc 1373 . . 3 (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿ko 𝐾) Cn 𝐿))
37 fveq1 6821 . . 3 (𝑤 = (𝑦𝑌𝐴) → (𝑤𝐵) = ((𝑦𝑌𝐴)‘𝐵))
3814, 20, 19, 36, 37cnmpt11 23579 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿))
3930, 38eqeltrrd 2832 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047   cuni 4859  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  Topctop 22809  TopOnctopon 22826   Cn ccn 23140  ko cxko 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-fin 8873  df-fi 9295  df-rest 17326  df-topgen 17347  df-pt 17348  df-top 22810  df-topon 22827  df-bases 22862  df-cn 23143  df-cmp 23303  df-xko 23479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator