MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkp Structured version   Visualization version   GIF version

Theorem cnmptkp 23596
Description: The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptkp.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptkp.b (𝜑𝐵𝑌)
cnmptkp.c (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
cnmptkp (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑍,𝑦   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑦,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem cnmptkp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2 cnmptkp.c . . . 4 (𝑦 = 𝐵𝐴 = 𝐶)
3 cnmptkp.b . . . . 5 (𝜑𝐵𝑌)
43adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑌)
52eleq1d 2818 . . . . 5 (𝑦 = 𝐵 → (𝐴 𝐿𝐶 𝐿))
6 cnmptk1.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
76adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
8 cnmptk1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑍))
9 topontop 22829 . . . . . . . . . 10 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐿 ∈ Top)
12 toptopon2 22834 . . . . . . . 8 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1311, 12sylib 218 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘ 𝐿))
14 cnmptk1.j . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 topontop 22829 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
166, 15syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ Top)
17 eqid 2733 . . . . . . . . . . 11 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1817xkotopon 23516 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
1916, 10, 18syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
20 cnmptkp.a . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
21 cnf2 23165 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2214, 19, 20, 21syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2322fvmptelcdm 7052 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
24 cnf2 23165 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌 𝐿)
257, 13, 23, 24syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌 𝐿)
261fmpt 7049 . . . . . 6 (∀𝑦𝑌 𝐴 𝐿 ↔ (𝑦𝑌𝐴):𝑌 𝐿)
2725, 26sylibr 234 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 𝐿)
285, 27, 4rspcdva 3574 . . . 4 ((𝜑𝑥𝑋) → 𝐶 𝐿)
291, 2, 4, 28fvmptd3 6958 . . 3 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
3029mpteq2dva 5186 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) = (𝑥𝑋𝐶))
31 toponuni 22830 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
326, 31syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
333, 32eleqtrd 2835 . . . 4 (𝜑𝐵 𝐾)
34 eqid 2733 . . . . 5 𝐾 = 𝐾
3534xkopjcn 23572 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝐵 𝐾) → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿ko 𝐾) Cn 𝐿))
3616, 10, 33, 35syl3anc 1373 . . 3 (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿ko 𝐾) Cn 𝐿))
37 fveq1 6827 . . 3 (𝑤 = (𝑦𝑌𝐴) → (𝑤𝐵) = ((𝑦𝑌𝐴)‘𝐵))
3814, 20, 19, 36, 37cnmpt11 23579 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿))
3930, 38eqeltrrd 2834 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   cuni 4858  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  Topctop 22809  TopOnctopon 22826   Cn ccn 23140  ko cxko 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-1o 8391  df-2o 8392  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-fin 8879  df-fi 9302  df-rest 17328  df-topgen 17349  df-pt 17350  df-top 22810  df-topon 22827  df-bases 22862  df-cn 23143  df-cmp 23303  df-xko 23479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator