![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cutmin | Structured version Visualization version GIF version |
Description: If 𝐵 has a minimum, then the minimum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.) |
Ref | Expression |
---|---|
cutmin.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
cutmin.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cutmin.3 | ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦) |
Ref | Expression |
---|---|
cutmin | ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cutmin.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
3 | ssltss1 27859 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ No ) |
5 | 4 | sselda 3998 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ No ) |
6 | slerflex 27834 | . . . . 5 ⊢ (𝑥 ∈ No → 𝑥 ≤s 𝑥) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤s 𝑥) |
8 | breq2 5155 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑥 ≤s 𝑦 ↔ 𝑥 ≤s 𝑥)) | |
9 | 8 | rspcev 3625 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
10 | 2, 7, 9 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
11 | 10 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
12 | cutmin.3 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦) | |
13 | cutmin.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
14 | breq1 5154 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) | |
15 | 14 | rexsng 4684 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) |
17 | 16 | ralbidv 3178 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦)) |
18 | 12, 17 | mpbird 257 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦) |
19 | scutcut 27872 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | |
20 | 1, 19 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
21 | 20 | simp2d 1144 | . 2 ⊢ (𝜑 → 𝐴 <<s {(𝐴 |s 𝐵)}) |
22 | 20 | simp3d 1145 | . . 3 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐵) |
23 | 13 | snssd 4817 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
24 | sssslt2 27867 | . . 3 ⊢ (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {𝑋} ⊆ 𝐵) → {(𝐴 |s 𝐵)} <<s {𝑋}) | |
25 | 22, 23, 24 | syl2anc 584 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s {𝑋}) |
26 | 1, 11, 18, 21, 25 | cofcut1d 27981 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3966 {csn 4634 class class class wbr 5151 (class class class)co 7438 No csur 27710 ≤s csle 27815 <<s csslt 27851 |s cscut 27853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ord 6395 df-on 6396 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1o 8514 df-2o 8515 df-no 27713 df-slt 27714 df-bday 27715 df-sle 27816 df-sslt 27852 df-scut 27854 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |