![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cutmin | Structured version Visualization version GIF version |
Description: If 𝐵 has a minimum, then the minimum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.) |
Ref | Expression |
---|---|
cutmin.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
cutmin.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cutmin.3 | ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦) |
Ref | Expression |
---|---|
cutmin | ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cutmin.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
3 | ssltss1 27842 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ No ) |
5 | 4 | sselda 4002 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ No ) |
6 | slerflex 27817 | . . . . 5 ⊢ (𝑥 ∈ No → 𝑥 ≤s 𝑥) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤s 𝑥) |
8 | breq2 5173 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑥 ≤s 𝑦 ↔ 𝑥 ≤s 𝑥)) | |
9 | 8 | rspcev 3631 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
10 | 2, 7, 9 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
11 | 10 | ralrimiva 3148 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
12 | cutmin.3 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦) | |
13 | cutmin.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
14 | breq1 5172 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) | |
15 | 14 | rexsng 4698 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) |
17 | 16 | ralbidv 3180 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦)) |
18 | 12, 17 | mpbird 257 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦) |
19 | scutcut 27855 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | |
20 | 1, 19 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
21 | 20 | simp2d 1143 | . 2 ⊢ (𝜑 → 𝐴 <<s {(𝐴 |s 𝐵)}) |
22 | 20 | simp3d 1144 | . . 3 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐵) |
23 | 13 | snssd 4834 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
24 | sssslt2 27850 | . . 3 ⊢ (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {𝑋} ⊆ 𝐵) → {(𝐴 |s 𝐵)} <<s {𝑋}) | |
25 | 22, 23, 24 | syl2anc 583 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s {𝑋}) |
26 | 1, 11, 18, 21, 25 | cofcut1d 27964 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2103 ∀wral 3063 ∃wrex 3072 ⊆ wss 3970 {csn 4648 class class class wbr 5169 (class class class)co 7445 No csur 27693 ≤s csle 27798 <<s csslt 27834 |s cscut 27836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4973 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-ord 6397 df-on 6398 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-1o 8518 df-2o 8519 df-no 27696 df-slt 27697 df-bday 27698 df-sle 27799 df-sslt 27835 df-scut 27837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |