| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cutmin | Structured version Visualization version GIF version | ||
| Description: If 𝐵 has a minimum, then the minimum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.) |
| Ref | Expression |
|---|---|
| cutmin.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cutmin.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cutmin.3 | ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦) |
| Ref | Expression |
|---|---|
| cutmin | ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cutmin.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | ssltss1 27728 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
| 4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ No ) |
| 5 | 4 | sselda 3929 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ No ) |
| 6 | slerflex 27702 | . . . . 5 ⊢ (𝑥 ∈ No → 𝑥 ≤s 𝑥) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤s 𝑥) |
| 8 | breq2 5093 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑥 ≤s 𝑦 ↔ 𝑥 ≤s 𝑥)) | |
| 9 | 8 | rspcev 3572 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| 10 | 2, 7, 9 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| 11 | 10 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| 12 | cutmin.3 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦) | |
| 13 | cutmin.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 14 | breq1 5092 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) | |
| 15 | 14 | rexsng 4626 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) |
| 16 | 13, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) |
| 17 | 16 | ralbidv 3155 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦)) |
| 18 | 12, 17 | mpbird 257 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦) |
| 19 | scutcut 27742 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | |
| 20 | 1, 19 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
| 21 | 20 | simp2d 1143 | . 2 ⊢ (𝜑 → 𝐴 <<s {(𝐴 |s 𝐵)}) |
| 22 | 20 | simp3d 1144 | . . 3 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐵) |
| 23 | 13 | snssd 4758 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
| 24 | sssslt2 27737 | . . 3 ⊢ (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {𝑋} ⊆ 𝐵) → {(𝐴 |s 𝐵)} <<s {𝑋}) | |
| 25 | 22, 23, 24 | syl2anc 584 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s {𝑋}) |
| 26 | 1, 11, 18, 21, 25 | cofcut1d 27865 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 {csn 4573 class class class wbr 5089 (class class class)co 7346 No csur 27578 ≤s csle 27683 <<s csslt 27720 |s cscut 27722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |