| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cutmin | Structured version Visualization version GIF version | ||
| Description: If 𝐵 has a minimum, then the minimum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.) |
| Ref | Expression |
|---|---|
| cutmin.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cutmin.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cutmin.3 | ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦) |
| Ref | Expression |
|---|---|
| cutmin | ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cutmin.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | ssltss1 27676 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
| 4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ No ) |
| 5 | 4 | sselda 3943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ No ) |
| 6 | slerflex 27651 | . . . . 5 ⊢ (𝑥 ∈ No → 𝑥 ≤s 𝑥) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤s 𝑥) |
| 8 | breq2 5106 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑥 ≤s 𝑦 ↔ 𝑥 ≤s 𝑥)) | |
| 9 | 8 | rspcev 3585 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| 10 | 2, 7, 9 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| 11 | 10 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) |
| 12 | cutmin.3 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦) | |
| 13 | cutmin.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 14 | breq1 5105 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) | |
| 15 | 14 | rexsng 4636 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) |
| 16 | 13, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ 𝑋 ≤s 𝑦)) |
| 17 | 16 | ralbidv 3156 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦)) |
| 18 | 12, 17 | mpbird 257 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦) |
| 19 | scutcut 27689 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | |
| 20 | 1, 19 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
| 21 | 20 | simp2d 1143 | . 2 ⊢ (𝜑 → 𝐴 <<s {(𝐴 |s 𝐵)}) |
| 22 | 20 | simp3d 1144 | . . 3 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐵) |
| 23 | 13 | snssd 4769 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
| 24 | sssslt2 27684 | . . 3 ⊢ (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {𝑋} ⊆ 𝐵) → {(𝐴 |s 𝐵)} <<s {𝑋}) | |
| 25 | 22, 23, 24 | syl2anc 584 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s {𝑋}) |
| 26 | 1, 11, 18, 21, 25 | cofcut1d 27805 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 {csn 4585 class class class wbr 5102 (class class class)co 7369 No csur 27527 ≤s csle 27632 <<s csslt 27668 |s cscut 27670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1o 8411 df-2o 8412 df-no 27530 df-slt 27531 df-bday 27532 df-sle 27633 df-sslt 27669 df-scut 27671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |