MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cutmin Structured version   Visualization version   GIF version

Theorem cutmin 27849
Description: If 𝐵 has a minimum, then the minimum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.)
Hypotheses
Ref Expression
cutmin.1 (𝜑𝐴 <<s 𝐵)
cutmin.2 (𝜑𝑋𝐵)
cutmin.3 (𝜑 → ∀𝑦𝐵 𝑋 ≤s 𝑦)
Assertion
Ref Expression
cutmin (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋   𝜑,𝑦

Proof of Theorem cutmin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cutmin.1 . 2 (𝜑𝐴 <<s 𝐵)
2 simpr 484 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝐴)
3 ssltss1 27706 . . . . . . 7 (𝐴 <<s 𝐵𝐴 No )
41, 3syl 17 . . . . . 6 (𝜑𝐴 No )
54sselda 3948 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 No )
6 slerflex 27681 . . . . 5 (𝑥 No 𝑥 ≤s 𝑥)
75, 6syl 17 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ≤s 𝑥)
8 breq2 5113 . . . . 5 (𝑦 = 𝑥 → (𝑥 ≤s 𝑦𝑥 ≤s 𝑥))
98rspcev 3591 . . . 4 ((𝑥𝐴𝑥 ≤s 𝑥) → ∃𝑦𝐴 𝑥 ≤s 𝑦)
102, 7, 9syl2anc 584 . . 3 ((𝜑𝑥𝐴) → ∃𝑦𝐴 𝑥 ≤s 𝑦)
1110ralrimiva 3126 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 𝑥 ≤s 𝑦)
12 cutmin.3 . . 3 (𝜑 → ∀𝑦𝐵 𝑋 ≤s 𝑦)
13 cutmin.2 . . . . 5 (𝜑𝑋𝐵)
14 breq1 5112 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ≤s 𝑦𝑋 ≤s 𝑦))
1514rexsng 4642 . . . . 5 (𝑋𝐵 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦𝑋 ≤s 𝑦))
1613, 15syl 17 . . . 4 (𝜑 → (∃𝑥 ∈ {𝑋}𝑥 ≤s 𝑦𝑋 ≤s 𝑦))
1716ralbidv 3157 . . 3 (𝜑 → (∀𝑦𝐵𝑥 ∈ {𝑋}𝑥 ≤s 𝑦 ↔ ∀𝑦𝐵 𝑋 ≤s 𝑦))
1812, 17mpbird 257 . 2 (𝜑 → ∀𝑦𝐵𝑥 ∈ {𝑋}𝑥 ≤s 𝑦)
19 scutcut 27719 . . . 4 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
201, 19syl 17 . . 3 (𝜑 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
2120simp2d 1143 . 2 (𝜑𝐴 <<s {(𝐴 |s 𝐵)})
2220simp3d 1144 . . 3 (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐵)
2313snssd 4775 . . 3 (𝜑 → {𝑋} ⊆ 𝐵)
24 sssslt2 27714 . . 3 (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {𝑋} ⊆ 𝐵) → {(𝐴 |s 𝐵)} <<s {𝑋})
2522, 23, 24syl2anc 584 . 2 (𝜑 → {(𝐴 |s 𝐵)} <<s {𝑋})
261, 11, 18, 21, 25cofcut1d 27835 1 (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3916  {csn 4591   class class class wbr 5109  (class class class)co 7389   No csur 27557   ≤s csle 27662   <<s csslt 27698   |s cscut 27700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1o 8436  df-2o 8437  df-no 27560  df-slt 27561  df-bday 27562  df-sle 27663  df-sslt 27699  df-scut 27701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator