| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cutmax | Structured version Visualization version GIF version | ||
| Description: If 𝐴 has a maximum, then the maximum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.) |
| Ref | Expression |
|---|---|
| cutmax.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cutmax.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| cutmax.3 | ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑋) |
| Ref | Expression |
|---|---|
| cutmax | ⊢ (𝜑 → (𝐴 |s 𝐵) = ({𝑋} |s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cutmax.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | cutmax.3 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑋) | |
| 3 | cutmax.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 4 | breq2 5127 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑦 ≤s 𝑥 ↔ 𝑦 ≤s 𝑋)) | |
| 5 | 4 | rexsng 4656 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥 ↔ 𝑦 ≤s 𝑋)) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥 ↔ 𝑦 ≤s 𝑋)) |
| 7 | 6 | ralbidv 3165 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑋)) |
| 8 | 2, 7 | mpbird 257 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 10 | ssltss2 27770 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | |
| 11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ No ) |
| 12 | 11 | sselda 3963 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ No ) |
| 13 | slerflex 27744 | . . . . 5 ⊢ (𝑥 ∈ No → 𝑥 ≤s 𝑥) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤s 𝑥) |
| 15 | breq1 5126 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ≤s 𝑥 ↔ 𝑥 ≤s 𝑥)) | |
| 16 | 15 | rspcev 3605 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ 𝐵 𝑦 ≤s 𝑥) |
| 17 | 9, 14, 16 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 𝑦 ≤s 𝑥) |
| 18 | 17 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑦 ≤s 𝑥) |
| 19 | scutcut 27782 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | |
| 20 | 1, 19 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
| 21 | 20 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐴 <<s {(𝐴 |s 𝐵)}) |
| 22 | 3 | snssd 4789 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐴) |
| 23 | sssslt1 27776 | . . 3 ⊢ ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ {𝑋} ⊆ 𝐴) → {𝑋} <<s {(𝐴 |s 𝐵)}) | |
| 24 | 21, 22, 23 | syl2anc 584 | . 2 ⊢ (𝜑 → {𝑋} <<s {(𝐴 |s 𝐵)}) |
| 25 | 20 | simp3d 1144 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐵) |
| 26 | 1, 8, 18, 24, 25 | cofcut1d 27891 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = ({𝑋} |s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3931 {csn 4606 class class class wbr 5123 (class class class)co 7413 No csur 27620 ≤s csle 27725 <<s csslt 27761 |s cscut 27763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1o 8488 df-2o 8489 df-no 27623 df-slt 27624 df-bday 27625 df-sle 27726 df-sslt 27762 df-scut 27764 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |