| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cutmax | Structured version Visualization version GIF version | ||
| Description: If 𝐴 has a maximum, then the maximum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.) |
| Ref | Expression |
|---|---|
| cutmax.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cutmax.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| cutmax.3 | ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑋) |
| Ref | Expression |
|---|---|
| cutmax | ⊢ (𝜑 → (𝐴 |s 𝐵) = ({𝑋} |s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cutmax.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | cutmax.3 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑋) | |
| 3 | cutmax.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 4 | breq2 5113 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑦 ≤s 𝑥 ↔ 𝑦 ≤s 𝑋)) | |
| 5 | 4 | rexsng 4642 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥 ↔ 𝑦 ≤s 𝑋)) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥 ↔ 𝑦 ≤s 𝑋)) |
| 7 | 6 | ralbidv 3157 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑋)) |
| 8 | 2, 7 | mpbird 257 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 10 | ssltss2 27707 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | |
| 11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ No ) |
| 12 | 11 | sselda 3948 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ No ) |
| 13 | slerflex 27681 | . . . . 5 ⊢ (𝑥 ∈ No → 𝑥 ≤s 𝑥) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤s 𝑥) |
| 15 | breq1 5112 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ≤s 𝑥 ↔ 𝑥 ≤s 𝑥)) | |
| 16 | 15 | rspcev 3591 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ 𝐵 𝑦 ≤s 𝑥) |
| 17 | 9, 14, 16 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 𝑦 ≤s 𝑥) |
| 18 | 17 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑦 ≤s 𝑥) |
| 19 | scutcut 27719 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | |
| 20 | 1, 19 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
| 21 | 20 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐴 <<s {(𝐴 |s 𝐵)}) |
| 22 | 3 | snssd 4775 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐴) |
| 23 | sssslt1 27713 | . . 3 ⊢ ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ {𝑋} ⊆ 𝐴) → {𝑋} <<s {(𝐴 |s 𝐵)}) | |
| 24 | 21, 22, 23 | syl2anc 584 | . 2 ⊢ (𝜑 → {𝑋} <<s {(𝐴 |s 𝐵)}) |
| 25 | 20 | simp3d 1144 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐵) |
| 26 | 1, 8, 18, 24, 25 | cofcut1d 27835 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = ({𝑋} |s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3916 {csn 4591 class class class wbr 5109 (class class class)co 7389 No csur 27557 ≤s csle 27662 <<s csslt 27698 |s cscut 27700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1o 8436 df-2o 8437 df-no 27560 df-slt 27561 df-bday 27562 df-sle 27663 df-sslt 27699 df-scut 27701 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |