MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cutmax Structured version   Visualization version   GIF version

Theorem cutmax 27904
Description: If 𝐴 has a maximum, then the maximum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.)
Hypotheses
Ref Expression
cutmax.1 (𝜑𝐴 <<s 𝐵)
cutmax.2 (𝜑𝑋𝐴)
cutmax.3 (𝜑 → ∀𝑦𝐴 𝑦 ≤s 𝑋)
Assertion
Ref Expression
cutmax (𝜑 → (𝐴 |s 𝐵) = ({𝑋} |s 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋   𝜑,𝑦

Proof of Theorem cutmax
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cutmax.1 . 2 (𝜑𝐴 <<s 𝐵)
2 cutmax.3 . . 3 (𝜑 → ∀𝑦𝐴 𝑦 ≤s 𝑋)
3 cutmax.2 . . . . 5 (𝜑𝑋𝐴)
4 breq2 5127 . . . . . 6 (𝑥 = 𝑋 → (𝑦 ≤s 𝑥𝑦 ≤s 𝑋))
54rexsng 4656 . . . . 5 (𝑋𝐴 → (∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥𝑦 ≤s 𝑋))
63, 5syl 17 . . . 4 (𝜑 → (∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥𝑦 ≤s 𝑋))
76ralbidv 3165 . . 3 (𝜑 → (∀𝑦𝐴𝑥 ∈ {𝑋}𝑦 ≤s 𝑥 ↔ ∀𝑦𝐴 𝑦 ≤s 𝑋))
82, 7mpbird 257 . 2 (𝜑 → ∀𝑦𝐴𝑥 ∈ {𝑋}𝑦 ≤s 𝑥)
9 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
10 ssltss2 27770 . . . . . . 7 (𝐴 <<s 𝐵𝐵 No )
111, 10syl 17 . . . . . 6 (𝜑𝐵 No )
1211sselda 3963 . . . . 5 ((𝜑𝑥𝐵) → 𝑥 No )
13 slerflex 27744 . . . . 5 (𝑥 No 𝑥 ≤s 𝑥)
1412, 13syl 17 . . . 4 ((𝜑𝑥𝐵) → 𝑥 ≤s 𝑥)
15 breq1 5126 . . . . 5 (𝑦 = 𝑥 → (𝑦 ≤s 𝑥𝑥 ≤s 𝑥))
1615rspcev 3605 . . . 4 ((𝑥𝐵𝑥 ≤s 𝑥) → ∃𝑦𝐵 𝑦 ≤s 𝑥)
179, 14, 16syl2anc 584 . . 3 ((𝜑𝑥𝐵) → ∃𝑦𝐵 𝑦 ≤s 𝑥)
1817ralrimiva 3133 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 𝑦 ≤s 𝑥)
19 scutcut 27782 . . . . 5 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
201, 19syl 17 . . . 4 (𝜑 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
2120simp2d 1143 . . 3 (𝜑𝐴 <<s {(𝐴 |s 𝐵)})
223snssd 4789 . . 3 (𝜑 → {𝑋} ⊆ 𝐴)
23 sssslt1 27776 . . 3 ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ {𝑋} ⊆ 𝐴) → {𝑋} <<s {(𝐴 |s 𝐵)})
2421, 22, 23syl2anc 584 . 2 (𝜑 → {𝑋} <<s {(𝐴 |s 𝐵)})
2520simp3d 1144 . 2 (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐵)
261, 8, 18, 24, 25cofcut1d 27891 1 (𝜑 → (𝐴 |s 𝐵) = ({𝑋} |s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3931  {csn 4606   class class class wbr 5123  (class class class)co 7413   No csur 27620   ≤s csle 27725   <<s csslt 27761   |s cscut 27763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1o 8488  df-2o 8489  df-no 27623  df-slt 27624  df-bday 27625  df-sle 27726  df-sslt 27762  df-scut 27764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator