MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cutmax Structured version   Visualization version   GIF version

Theorem cutmax 27818
Description: If 𝐴 has a maximum, then the maximum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.)
Hypotheses
Ref Expression
cutmax.1 (𝜑𝐴 <<s 𝐵)
cutmax.2 (𝜑𝑋𝐴)
cutmax.3 (𝜑 → ∀𝑦𝐴 𝑦 ≤s 𝑋)
Assertion
Ref Expression
cutmax (𝜑 → (𝐴 |s 𝐵) = ({𝑋} |s 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋   𝜑,𝑦

Proof of Theorem cutmax
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cutmax.1 . 2 (𝜑𝐴 <<s 𝐵)
2 cutmax.3 . . 3 (𝜑 → ∀𝑦𝐴 𝑦 ≤s 𝑋)
3 cutmax.2 . . . . 5 (𝜑𝑋𝐴)
4 breq2 5106 . . . . . 6 (𝑥 = 𝑋 → (𝑦 ≤s 𝑥𝑦 ≤s 𝑋))
54rexsng 4636 . . . . 5 (𝑋𝐴 → (∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥𝑦 ≤s 𝑋))
63, 5syl 17 . . . 4 (𝜑 → (∃𝑥 ∈ {𝑋}𝑦 ≤s 𝑥𝑦 ≤s 𝑋))
76ralbidv 3156 . . 3 (𝜑 → (∀𝑦𝐴𝑥 ∈ {𝑋}𝑦 ≤s 𝑥 ↔ ∀𝑦𝐴 𝑦 ≤s 𝑋))
82, 7mpbird 257 . 2 (𝜑 → ∀𝑦𝐴𝑥 ∈ {𝑋}𝑦 ≤s 𝑥)
9 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
10 ssltss2 27677 . . . . . . 7 (𝐴 <<s 𝐵𝐵 No )
111, 10syl 17 . . . . . 6 (𝜑𝐵 No )
1211sselda 3943 . . . . 5 ((𝜑𝑥𝐵) → 𝑥 No )
13 slerflex 27651 . . . . 5 (𝑥 No 𝑥 ≤s 𝑥)
1412, 13syl 17 . . . 4 ((𝜑𝑥𝐵) → 𝑥 ≤s 𝑥)
15 breq1 5105 . . . . 5 (𝑦 = 𝑥 → (𝑦 ≤s 𝑥𝑥 ≤s 𝑥))
1615rspcev 3585 . . . 4 ((𝑥𝐵𝑥 ≤s 𝑥) → ∃𝑦𝐵 𝑦 ≤s 𝑥)
179, 14, 16syl2anc 584 . . 3 ((𝜑𝑥𝐵) → ∃𝑦𝐵 𝑦 ≤s 𝑥)
1817ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 𝑦 ≤s 𝑥)
19 scutcut 27689 . . . . 5 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
201, 19syl 17 . . . 4 (𝜑 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
2120simp2d 1143 . . 3 (𝜑𝐴 <<s {(𝐴 |s 𝐵)})
223snssd 4769 . . 3 (𝜑 → {𝑋} ⊆ 𝐴)
23 sssslt1 27683 . . 3 ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ {𝑋} ⊆ 𝐴) → {𝑋} <<s {(𝐴 |s 𝐵)})
2421, 22, 23syl2anc 584 . 2 (𝜑 → {𝑋} <<s {(𝐴 |s 𝐵)})
2520simp3d 1144 . 2 (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐵)
261, 8, 18, 24, 25cofcut1d 27805 1 (𝜑 → (𝐴 |s 𝐵) = ({𝑋} |s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911  {csn 4585   class class class wbr 5102  (class class class)co 7369   No csur 27527   ≤s csle 27632   <<s csslt 27668   |s cscut 27670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1o 8411  df-2o 8412  df-no 27530  df-slt 27531  df-bday 27532  df-sle 27633  df-sslt 27669  df-scut 27671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator