Proof of Theorem dalawlem4
| Step | Hyp | Ref
| Expression |
| 1 | | simp11 1204 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ HL) |
| 2 | | simp12 1205 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄)) |
| 3 | 1 | hllatd 39387 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 4 | | simp22 1208 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
| 5 | | simp32 1211 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑇 ∈ 𝐴) |
| 6 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 7 | | dalawlem.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
| 8 | | dalawlem.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | 6, 7, 8 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 10 | 1, 4, 5, 9 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 11 | | simp21 1207 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
| 12 | | simp31 1210 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ∈ 𝐴) |
| 13 | 6, 7, 8 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 14 | 1, 11, 12, 13 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 15 | | dalawlem.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 16 | 6, 15 | latmcom 18478 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
| 17 | 3, 10, 14, 16 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
| 18 | 7, 8 | hlatjcom 39391 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑄)) |
| 19 | 1, 4, 11, 18 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑄)) |
| 20 | 2, 17, 19 | 3brtr4d 5156 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑃)) |
| 21 | | simp13 1206 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) |
| 22 | 17, 21 | eqbrtrd 5146 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑅 ∨ 𝑈)) |
| 23 | | simp23 1209 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑅 ∈ 𝐴) |
| 24 | | simp33 1212 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ∈ 𝐴) |
| 25 | | dalawlem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 26 | 25, 7, 15, 8 | dalawlem3 39897 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑃) ∧ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ 𝑇) ≤ (((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑄) ∧ (𝑈 ∨ 𝑇)))) |
| 27 | 1, 20, 22, 4, 11, 23, 5, 12, 24, 26 | syl333anc 1404 |
. 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ 𝑇) ≤ (((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑄) ∧ (𝑈 ∨ 𝑇)))) |
| 28 | 7, 8 | hlatjcom 39391 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
| 29 | 1, 11, 23, 28 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
| 30 | 7, 8 | hlatjcom 39391 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑆 ∨ 𝑈) = (𝑈 ∨ 𝑆)) |
| 31 | 1, 12, 24, 30 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑆 ∨ 𝑈) = (𝑈 ∨ 𝑆)) |
| 32 | 29, 31 | oveq12d 7428 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑈)) = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) |
| 33 | 7, 8 | hlatjcom 39391 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑅 ∨ 𝑄) = (𝑄 ∨ 𝑅)) |
| 34 | 1, 23, 4, 33 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ 𝑄) = (𝑄 ∨ 𝑅)) |
| 35 | 7, 8 | hlatjcom 39391 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑈 ∨ 𝑇) = (𝑇 ∨ 𝑈)) |
| 36 | 1, 24, 5, 35 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ 𝑇) = (𝑇 ∨ 𝑈)) |
| 37 | 34, 36 | oveq12d 7428 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑅 ∨ 𝑄) ∧ (𝑈 ∨ 𝑇)) = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈))) |
| 38 | 32, 37 | oveq12d 7428 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑄) ∧ (𝑈 ∨ 𝑇))) = (((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∨ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)))) |
| 39 | 6, 7, 8 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) |
| 40 | 1, 23, 11, 39 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) |
| 41 | 6, 7, 8 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 42 | 1, 24, 12, 41 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 43 | 6, 15 | latmcl 18455 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) |
| 44 | 3, 40, 42, 43 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) |
| 45 | 6, 7, 8 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 46 | 1, 4, 23, 45 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 47 | 6, 7, 8 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
| 48 | 1, 5, 24, 47 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
| 49 | 6, 15 | latmcl 18455 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) |
| 50 | 3, 46, 48, 49 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) |
| 51 | 6, 7 | latjcom 18462 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) → (((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∨ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈))) = (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |
| 52 | 3, 44, 50, 51 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∨ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈))) = (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |
| 53 | 38, 52 | eqtrd 2771 |
. 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑄) ∧ (𝑈 ∨ 𝑇))) = (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |
| 54 | 27, 53 | breqtrd 5150 |
1
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ 𝑇) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |