|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > divdir | Structured version Visualization version GIF version | ||
| Description: Distribution of division over addition. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| divdir | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐴 ∈ ℂ) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ) | |
| 3 | reccl 11930 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈ ℂ) | |
| 4 | 3 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (1 / 𝐶) ∈ ℂ) | 
| 5 | 1, 2, 4 | adddird 11287 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) · (1 / 𝐶)) = ((𝐴 · (1 / 𝐶)) + (𝐵 · (1 / 𝐶)))) | 
| 6 | 1, 2 | addcld 11281 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 + 𝐵) ∈ ℂ) | 
| 7 | simp3l 1201 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ∈ ℂ) | |
| 8 | simp3r 1202 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ≠ 0) | |
| 9 | divrec 11939 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 + 𝐵) · (1 / 𝐶))) | |
| 10 | 6, 7, 8, 9 | syl3anc 1372 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 + 𝐵) · (1 / 𝐶))) | 
| 11 | divrec 11939 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) | |
| 12 | 1, 7, 8, 11 | syl3anc 1372 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) | 
| 13 | divrec 11939 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) | |
| 14 | 2, 7, 8, 13 | syl3anc 1372 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) | 
| 15 | 12, 14 | oveq12d 7450 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + (𝐵 / 𝐶)) = ((𝐴 · (1 / 𝐶)) + (𝐵 · (1 / 𝐶)))) | 
| 16 | 5, 10, 15 | 3eqtr4d 2786 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 (class class class)co 7432 ℂcc 11154 0cc0 11156 1c1 11157 + caddc 11159 · cmul 11161 / cdiv 11921 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 | 
| This theorem is referenced by: muldivdir 11961 divsubdir 11962 divadddiv 11983 divdirzi 12020 divdird 12082 2halves 12486 halfaddsub 12501 zdivadd 12691 nneo 12704 rpnnen1lem5 13024 2tnp1ge0ge0 13870 fldiv 13901 modcyc 13947 mulsubdivbinom2 14302 crim 15155 efival 16189 flodddiv4 16453 divgcdcoprm0 16703 pythagtriplem17 16870 ptolemy 26539 relogbmul 26821 harmonicbnd4 27055 ppiub 27249 logfacrlim 27269 bposlem9 27337 2lgslem3a 27441 2lgslem3b 27442 2lgslem3c 27443 2lgslem3d 27444 chpchtlim 27524 mudivsum 27575 selberglem2 27591 pntrsumo1 27610 pntibndlem2 27636 pntibndlem3 27637 pntlemb 27642 dpfrac1 32875 heiborlem6 37824 zofldiv2ALTV 47654 zofldiv2 48457 sinhpcosh 49314 onetansqsecsq 49335 | 
| Copyright terms: Public domain | W3C validator |