| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divcan5rd | Structured version Visualization version GIF version | ||
| Description: Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| divmuld.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| divdiv23d.5 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| Ref | Expression |
|---|---|
| divcan5rd | ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divmuld.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | 1, 2 | mulcomd 11261 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐶) = (𝐶 · 𝐴)) |
| 4 | divcld.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 5 | 4, 2 | mulcomd 11261 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 6 | 3, 5 | oveq12d 7428 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = ((𝐶 · 𝐴) / (𝐶 · 𝐵))) |
| 7 | divmuld.4 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 8 | divdiv23d.5 | . . 3 ⊢ (𝜑 → 𝐶 ≠ 0) | |
| 9 | 1, 4, 2, 7, 8 | divcan5d 12048 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) |
| 10 | 6, 9 | eqtrd 2771 | 1 ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 (class class class)co 7410 ℂcc 11132 0cc0 11134 · cmul 11139 / cdiv 11899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 |
| This theorem is referenced by: dvmptdiv 25935 dvtaylp 26335 chordthmlem2 26800 itg2addnclem 37700 stirlinglem1 46070 dirkertrigeqlem2 46095 dirkercncflem2 46100 sigardiv 46857 |
| Copyright terms: Public domain | W3C validator |