Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeqlem2 Structured version   Visualization version   GIF version

Theorem dirkertrigeqlem2 40833
Description: Trigonomic equality lemma for the Dirichlet Kernel trigonomic equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkertrigeqlem2.a (𝜑𝐴 ∈ ℝ)
dirkertrigeqlem2.sinne0 (𝜑 → (sin‘𝐴) ≠ 0)
dirkertrigeqlem2.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dirkertrigeqlem2 (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁   𝜑,𝑛

Proof of Theorem dirkertrigeqlem2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1cnd 10258 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
21halfcld 11479 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℂ)
3 fzfid 12980 . . . . . . . . 9 (𝜑 → (1...𝑁) ∈ Fin)
4 elfzelz 12549 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ)
54zcnd 11685 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
65adantl 467 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℂ)
7 dirkertrigeqlem2.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
87recnd 10270 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
98adantr 466 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
106, 9mulcld 10262 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 · 𝐴) ∈ ℂ)
1110coscld 15067 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝐴)) ∈ ℂ)
123, 11fsumcl 14672 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴)) ∈ ℂ)
132, 12addcld 10261 . . . . . . 7 (𝜑 → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) ∈ ℂ)
148sincld 15066 . . . . . . 7 (𝜑 → (sin‘𝐴) ∈ ℂ)
15 dirkertrigeqlem2.sinne0 . . . . . . 7 (𝜑 → (sin‘𝐴) ≠ 0)
1613, 14, 15divcan4d 11009 . . . . . 6 (𝜑 → ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) · (sin‘𝐴)) / (sin‘𝐴)) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))))
1716eqcomd 2777 . . . . 5 (𝜑 → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) = ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) · (sin‘𝐴)) / (sin‘𝐴)))
183, 14, 11fsummulc1 14724 . . . . . . . . 9 (𝜑 → (Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴)) · (sin‘𝐴)) = Σ𝑛 ∈ (1...𝑁)((cos‘(𝑛 · 𝐴)) · (sin‘𝐴)))
1914adantr 466 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘𝐴) ∈ ℂ)
2011, 19mulcomd 10263 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝐴)) · (sin‘𝐴)) = ((sin‘𝐴) · (cos‘(𝑛 · 𝐴))))
21 sinmulcos 40594 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (𝑛 · 𝐴) ∈ ℂ) → ((sin‘𝐴) · (cos‘(𝑛 · 𝐴))) = (((sin‘(𝐴 + (𝑛 · 𝐴))) + (sin‘(𝐴 − (𝑛 · 𝐴)))) / 2))
229, 10, 21syl2anc 565 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘𝐴) · (cos‘(𝑛 · 𝐴))) = (((sin‘(𝐴 + (𝑛 · 𝐴))) + (sin‘(𝐴 − (𝑛 · 𝐴)))) / 2))
23 1cnd 10258 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → 1 ∈ ℂ)
246, 23, 9adddird 10267 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑛 + 1) · 𝐴) = ((𝑛 · 𝐴) + (1 · 𝐴)))
2523, 9mulcld 10262 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (1 · 𝐴) ∈ ℂ)
2610, 25addcomd 10440 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑛 · 𝐴) + (1 · 𝐴)) = ((1 · 𝐴) + (𝑛 · 𝐴)))
278mulid2d 10260 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 · 𝐴) = 𝐴)
2827oveq1d 6808 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 · 𝐴) + (𝑛 · 𝐴)) = (𝐴 + (𝑛 · 𝐴)))
2928adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → ((1 · 𝐴) + (𝑛 · 𝐴)) = (𝐴 + (𝑛 · 𝐴)))
3024, 26, 293eqtrrd 2810 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴 + (𝑛 · 𝐴)) = ((𝑛 + 1) · 𝐴))
3130fveq2d 6336 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝐴 + (𝑛 · 𝐴))) = (sin‘((𝑛 + 1) · 𝐴)))
3210, 9negsubdi2d 10610 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → -((𝑛 · 𝐴) − 𝐴) = (𝐴 − (𝑛 · 𝐴)))
3332eqcomd 2777 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴 − (𝑛 · 𝐴)) = -((𝑛 · 𝐴) − 𝐴))
3433fveq2d 6336 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝐴 − (𝑛 · 𝐴))) = (sin‘-((𝑛 · 𝐴) − 𝐴)))
3510, 9subcld 10594 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑛 · 𝐴) − 𝐴) ∈ ℂ)
36 sinneg 15082 . . . . . . . . . . . . . . . 16 (((𝑛 · 𝐴) − 𝐴) ∈ ℂ → (sin‘-((𝑛 · 𝐴) − 𝐴)) = -(sin‘((𝑛 · 𝐴) − 𝐴)))
3735, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘-((𝑛 · 𝐴) − 𝐴)) = -(sin‘((𝑛 · 𝐴) − 𝐴)))
3834, 37eqtrd 2805 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝐴 − (𝑛 · 𝐴))) = -(sin‘((𝑛 · 𝐴) − 𝐴)))
3931, 38oveq12d 6811 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝐴 + (𝑛 · 𝐴))) + (sin‘(𝐴 − (𝑛 · 𝐴)))) = ((sin‘((𝑛 + 1) · 𝐴)) + -(sin‘((𝑛 · 𝐴) − 𝐴))))
409, 10addcld 10261 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴 + (𝑛 · 𝐴)) ∈ ℂ)
4140sincld 15066 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝐴 + (𝑛 · 𝐴))) ∈ ℂ)
4231, 41eqeltrrd 2851 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘((𝑛 + 1) · 𝐴)) ∈ ℂ)
4335sincld 15066 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘((𝑛 · 𝐴) − 𝐴)) ∈ ℂ)
4442, 43negsubd 10600 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘((𝑛 + 1) · 𝐴)) + -(sin‘((𝑛 · 𝐴) − 𝐴))) = ((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 · 𝐴) − 𝐴))))
456, 9mulsubfacd 10694 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑛 · 𝐴) − 𝐴) = ((𝑛 − 1) · 𝐴))
4645fveq2d 6336 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘((𝑛 · 𝐴) − 𝐴)) = (sin‘((𝑛 − 1) · 𝐴)))
4746oveq2d 6809 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 · 𝐴) − 𝐴))) = ((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))
4839, 44, 473eqtrd 2809 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝐴 + (𝑛 · 𝐴))) + (sin‘(𝐴 − (𝑛 · 𝐴)))) = ((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))
4948oveq1d 6808 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘(𝐴 + (𝑛 · 𝐴))) + (sin‘(𝐴 − (𝑛 · 𝐴)))) / 2) = (((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) / 2))
5020, 22, 493eqtrd 2809 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝐴)) · (sin‘𝐴)) = (((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) / 2))
5150sumeq2dv 14641 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...𝑁)((cos‘(𝑛 · 𝐴)) · (sin‘𝐴)) = Σ𝑛 ∈ (1...𝑁)(((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) / 2))
52 2cnd 11295 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
53 peano2cnm 10549 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (𝑛 − 1) ∈ ℂ)
546, 53syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ∈ ℂ)
5554, 9mulcld 10262 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑛 − 1) · 𝐴) ∈ ℂ)
5655sincld 15066 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘((𝑛 − 1) · 𝐴)) ∈ ℂ)
5742, 56subcld 10594 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) ∈ ℂ)
58 2ne0 11315 . . . . . . . . . . . 12 2 ≠ 0
5958a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ≠ 0)
603, 52, 57, 59fsumdivc 14725 . . . . . . . . . 10 (𝜑 → (Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) / 2) = Σ𝑛 ∈ (1...𝑁)(((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) / 2))
613, 57fsumcl 14672 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) ∈ ℂ)
6261, 52, 59divrec2d 11007 . . . . . . . . . 10 (𝜑 → (Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) / 2) = ((1 / 2) · Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))))
6360, 62eqtr3d 2807 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) / 2) = ((1 / 2) · Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))))
6418, 51, 633eqtrd 2809 . . . . . . . 8 (𝜑 → (Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴)) · (sin‘𝐴)) = ((1 / 2) · Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))))
6564oveq2d 6809 . . . . . . 7 (𝜑 → (((1 / 2) · (sin‘𝐴)) + (Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴)) · (sin‘𝐴))) = (((1 / 2) · (sin‘𝐴)) + ((1 / 2) · Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))))
662, 12, 14adddird 10267 . . . . . . 7 (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) · (sin‘𝐴)) = (((1 / 2) · (sin‘𝐴)) + (Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴)) · (sin‘𝐴))))
672, 14, 61adddid 10266 . . . . . . 7 (𝜑 → ((1 / 2) · ((sin‘𝐴) + Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))) = (((1 / 2) · (sin‘𝐴)) + ((1 / 2) · Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))))
6865, 66, 673eqtr4d 2815 . . . . . 6 (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) · (sin‘𝐴)) = ((1 / 2) · ((sin‘𝐴) + Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))))
6968oveq1d 6808 . . . . 5 (𝜑 → ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) · (sin‘𝐴)) / (sin‘𝐴)) = (((1 / 2) · ((sin‘𝐴) + Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))) / (sin‘𝐴)))
7010sincld 15066 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝐴)) ∈ ℂ)
7142, 70, 56npncand 10618 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘((𝑛 + 1) · 𝐴)) − (sin‘(𝑛 · 𝐴))) + ((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))) = ((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))
7271eqcomd 2777 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) = (((sin‘((𝑛 + 1) · 𝐴)) − (sin‘(𝑛 · 𝐴))) + ((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))))
7372sumeq2dv 14641 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) = Σ𝑛 ∈ (1...𝑁)(((sin‘((𝑛 + 1) · 𝐴)) − (sin‘(𝑛 · 𝐴))) + ((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))))
7442, 70subcld 10594 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘((𝑛 + 1) · 𝐴)) − (sin‘(𝑛 · 𝐴))) ∈ ℂ)
7570, 56subcld 10594 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) ∈ ℂ)
763, 74, 75fsumadd 14678 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((sin‘((𝑛 + 1) · 𝐴)) − (sin‘(𝑛 · 𝐴))) + ((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))) = (Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘(𝑛 · 𝐴))) + Σ𝑛 ∈ (1...𝑁)((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))))
77 fvoveq1 6816 . . . . . . . . . . . 12 (𝑗 = 𝑛 → (sin‘(𝑗 · 𝐴)) = (sin‘(𝑛 · 𝐴)))
78 fvoveq1 6816 . . . . . . . . . . . 12 (𝑗 = (𝑛 + 1) → (sin‘(𝑗 · 𝐴)) = (sin‘((𝑛 + 1) · 𝐴)))
79 fvoveq1 6816 . . . . . . . . . . . 12 (𝑗 = 1 → (sin‘(𝑗 · 𝐴)) = (sin‘(1 · 𝐴)))
80 fvoveq1 6816 . . . . . . . . . . . 12 (𝑗 = (𝑁 + 1) → (sin‘(𝑗 · 𝐴)) = (sin‘((𝑁 + 1) · 𝐴)))
81 dirkertrigeqlem2.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
8281nnzd 11683 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
83 nnuz 11925 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
8481, 83syl6eleq 2860 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘1))
85 peano2uz 11943 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → (𝑁 + 1) ∈ (ℤ‘1))
8684, 85syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ (ℤ‘1))
87 elfzelz 12549 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...(𝑁 + 1)) → 𝑗 ∈ ℤ)
8887zcnd 11685 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...(𝑁 + 1)) → 𝑗 ∈ ℂ)
8988adantl 467 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...(𝑁 + 1))) → 𝑗 ∈ ℂ)
908adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...(𝑁 + 1))) → 𝐴 ∈ ℂ)
9189, 90mulcld 10262 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...(𝑁 + 1))) → (𝑗 · 𝐴) ∈ ℂ)
9291sincld 15066 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...(𝑁 + 1))) → (sin‘(𝑗 · 𝐴)) ∈ ℂ)
9377, 78, 79, 80, 82, 86, 92telfsum2 14744 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘(𝑛 · 𝐴))) = ((sin‘((𝑁 + 1) · 𝐴)) − (sin‘(1 · 𝐴))))
94 1cnd 10258 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → 1 ∈ ℂ)
955, 94pncand 10595 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) → ((𝑛 + 1) − 1) = 𝑛)
9695eqcomd 2777 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) → 𝑛 = ((𝑛 + 1) − 1))
9796adantl 467 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 = ((𝑛 + 1) − 1))
9897fvoveq1d 6815 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝐴)) = (sin‘(((𝑛 + 1) − 1) · 𝐴)))
9998oveq1d 6808 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) = ((sin‘(((𝑛 + 1) − 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))
10099sumeq2dv 14641 . . . . . . . . . . . 12 (𝜑 → Σ𝑛 ∈ (1...𝑁)((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) = Σ𝑛 ∈ (1...𝑁)((sin‘(((𝑛 + 1) − 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))
101 oveq1 6800 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → (𝑗 − 1) = (𝑛 − 1))
102101fvoveq1d 6815 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (sin‘((𝑗 − 1) · 𝐴)) = (sin‘((𝑛 − 1) · 𝐴)))
103 oveq1 6800 . . . . . . . . . . . . . 14 (𝑗 = (𝑛 + 1) → (𝑗 − 1) = ((𝑛 + 1) − 1))
104103fvoveq1d 6815 . . . . . . . . . . . . 13 (𝑗 = (𝑛 + 1) → (sin‘((𝑗 − 1) · 𝐴)) = (sin‘(((𝑛 + 1) − 1) · 𝐴)))
105 oveq1 6800 . . . . . . . . . . . . . 14 (𝑗 = 1 → (𝑗 − 1) = (1 − 1))
106105fvoveq1d 6815 . . . . . . . . . . . . 13 (𝑗 = 1 → (sin‘((𝑗 − 1) · 𝐴)) = (sin‘((1 − 1) · 𝐴)))
107 oveq1 6800 . . . . . . . . . . . . . 14 (𝑗 = (𝑁 + 1) → (𝑗 − 1) = ((𝑁 + 1) − 1))
108107fvoveq1d 6815 . . . . . . . . . . . . 13 (𝑗 = (𝑁 + 1) → (sin‘((𝑗 − 1) · 𝐴)) = (sin‘(((𝑁 + 1) − 1) · 𝐴)))
109 1cnd 10258 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
11089, 109subcld 10594 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...(𝑁 + 1))) → (𝑗 − 1) ∈ ℂ)
111110, 90mulcld 10262 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...(𝑁 + 1))) → ((𝑗 − 1) · 𝐴) ∈ ℂ)
112111sincld 15066 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...(𝑁 + 1))) → (sin‘((𝑗 − 1) · 𝐴)) ∈ ℂ)
113102, 104, 106, 108, 82, 86, 112telfsum2 14744 . . . . . . . . . . . 12 (𝜑 → Σ𝑛 ∈ (1...𝑁)((sin‘(((𝑛 + 1) − 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) = ((sin‘(((𝑁 + 1) − 1) · 𝐴)) − (sin‘((1 − 1) · 𝐴))))
11481nnred 11237 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
115114recnd 10270 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
116115, 1pncand 10595 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
117116fvoveq1d 6815 . . . . . . . . . . . . 13 (𝜑 → (sin‘(((𝑁 + 1) − 1) · 𝐴)) = (sin‘(𝑁 · 𝐴)))
1181subidd 10582 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 − 1) = 0)
119118oveq1d 6808 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 − 1) · 𝐴) = (0 · 𝐴))
1208mul02d 10436 . . . . . . . . . . . . . . . 16 (𝜑 → (0 · 𝐴) = 0)
121119, 120eqtrd 2805 . . . . . . . . . . . . . . 15 (𝜑 → ((1 − 1) · 𝐴) = 0)
122121fveq2d 6336 . . . . . . . . . . . . . 14 (𝜑 → (sin‘((1 − 1) · 𝐴)) = (sin‘0))
123 sin0 15085 . . . . . . . . . . . . . . 15 (sin‘0) = 0
124123a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (sin‘0) = 0)
125122, 124eqtrd 2805 . . . . . . . . . . . . 13 (𝜑 → (sin‘((1 − 1) · 𝐴)) = 0)
126117, 125oveq12d 6811 . . . . . . . . . . . 12 (𝜑 → ((sin‘(((𝑁 + 1) − 1) · 𝐴)) − (sin‘((1 − 1) · 𝐴))) = ((sin‘(𝑁 · 𝐴)) − 0))
127100, 113, 1263eqtrd 2809 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...𝑁)((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) = ((sin‘(𝑁 · 𝐴)) − 0))
12893, 127oveq12d 6811 . . . . . . . . . 10 (𝜑 → (Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘(𝑛 · 𝐴))) + Σ𝑛 ∈ (1...𝑁)((sin‘(𝑛 · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))) = (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘(1 · 𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0)))
12973, 76, 1283eqtrd 2809 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))) = (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘(1 · 𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0)))
130129oveq2d 6809 . . . . . . . 8 (𝜑 → ((sin‘𝐴) + Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))) = ((sin‘𝐴) + (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘(1 · 𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0))))
13127fveq2d 6336 . . . . . . . . . . . 12 (𝜑 → (sin‘(1 · 𝐴)) = (sin‘𝐴))
132131oveq2d 6809 . . . . . . . . . . 11 (𝜑 → ((sin‘((𝑁 + 1) · 𝐴)) − (sin‘(1 · 𝐴))) = ((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴)))
133132oveq1d 6808 . . . . . . . . . 10 (𝜑 → (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘(1 · 𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0)) = (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴)) + ((sin‘(𝑁 · 𝐴)) − 0)))
134133oveq2d 6809 . . . . . . . . 9 (𝜑 → ((sin‘𝐴) + (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘(1 · 𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0))) = ((sin‘𝐴) + (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴)) + ((sin‘(𝑁 · 𝐴)) − 0))))
135115, 1addcld 10261 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 1) ∈ ℂ)
136135, 8mulcld 10262 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + 1) · 𝐴) ∈ ℂ)
137136sincld 15066 . . . . . . . . . . . 12 (𝜑 → (sin‘((𝑁 + 1) · 𝐴)) ∈ ℂ)
138137, 14subcld 10594 . . . . . . . . . . 11 (𝜑 → ((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴)) ∈ ℂ)
139115, 8mulcld 10262 . . . . . . . . . . . . 13 (𝜑 → (𝑁 · 𝐴) ∈ ℂ)
140139sincld 15066 . . . . . . . . . . . 12 (𝜑 → (sin‘(𝑁 · 𝐴)) ∈ ℂ)
141 0cnd 10235 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℂ)
142140, 141subcld 10594 . . . . . . . . . . 11 (𝜑 → ((sin‘(𝑁 · 𝐴)) − 0) ∈ ℂ)
14314, 138, 142addassd 10264 . . . . . . . . . 10 (𝜑 → (((sin‘𝐴) + ((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0)) = ((sin‘𝐴) + (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴)) + ((sin‘(𝑁 · 𝐴)) − 0))))
144143eqcomd 2777 . . . . . . . . 9 (𝜑 → ((sin‘𝐴) + (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴)) + ((sin‘(𝑁 · 𝐴)) − 0))) = (((sin‘𝐴) + ((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0)))
14514, 137pncan3d 10597 . . . . . . . . . . 11 (𝜑 → ((sin‘𝐴) + ((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴))) = (sin‘((𝑁 + 1) · 𝐴)))
146140subid1d 10583 . . . . . . . . . . 11 (𝜑 → ((sin‘(𝑁 · 𝐴)) − 0) = (sin‘(𝑁 · 𝐴)))
147145, 146oveq12d 6811 . . . . . . . . . 10 (𝜑 → (((sin‘𝐴) + ((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0)) = ((sin‘((𝑁 + 1) · 𝐴)) + (sin‘(𝑁 · 𝐴))))
148137, 140addcomd 10440 . . . . . . . . . 10 (𝜑 → ((sin‘((𝑁 + 1) · 𝐴)) + (sin‘(𝑁 · 𝐴))) = ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴))))
149147, 148eqtrd 2805 . . . . . . . . 9 (𝜑 → (((sin‘𝐴) + ((sin‘((𝑁 + 1) · 𝐴)) − (sin‘𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0)) = ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴))))
150134, 144, 1493eqtrd 2809 . . . . . . . 8 (𝜑 → ((sin‘𝐴) + (((sin‘((𝑁 + 1) · 𝐴)) − (sin‘(1 · 𝐴))) + ((sin‘(𝑁 · 𝐴)) − 0))) = ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴))))
151130, 150eqtrd 2805 . . . . . . 7 (𝜑 → ((sin‘𝐴) + Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴)))) = ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴))))
152151oveq2d 6809 . . . . . 6 (𝜑 → ((1 / 2) · ((sin‘𝐴) + Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))) = ((1 / 2) · ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴)))))
153152oveq1d 6808 . . . . 5 (𝜑 → (((1 / 2) · ((sin‘𝐴) + Σ𝑛 ∈ (1...𝑁)((sin‘((𝑛 + 1) · 𝐴)) − (sin‘((𝑛 − 1) · 𝐴))))) / (sin‘𝐴)) = (((1 / 2) · ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴)))) / (sin‘𝐴)))
15417, 69, 1533eqtrd 2809 . . . 4 (𝜑 → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) = (((1 / 2) · ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴)))) / (sin‘𝐴)))
155 halfre 11448 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
156155a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
157114, 156readdcld 10271 . . . . . . . . . 10 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
158157, 7remulcld 10272 . . . . . . . . 9 (𝜑 → ((𝑁 + (1 / 2)) · 𝐴) ∈ ℝ)
159158recnd 10270 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · 𝐴) ∈ ℂ)
1602, 8mulcld 10262 . . . . . . . 8 (𝜑 → ((1 / 2) · 𝐴) ∈ ℂ)
161 sinmulcos 40594 . . . . . . . 8 ((((𝑁 + (1 / 2)) · 𝐴) ∈ ℂ ∧ ((1 / 2) · 𝐴) ∈ ℂ) → ((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) = (((sin‘(((𝑁 + (1 / 2)) · 𝐴) + ((1 / 2) · 𝐴))) + (sin‘(((𝑁 + (1 / 2)) · 𝐴) − ((1 / 2) · 𝐴)))) / 2))
162159, 160, 161syl2anc 565 . . . . . . 7 (𝜑 → ((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) = (((sin‘(((𝑁 + (1 / 2)) · 𝐴) + ((1 / 2) · 𝐴))) + (sin‘(((𝑁 + (1 / 2)) · 𝐴) − ((1 / 2) · 𝐴)))) / 2))
163115, 2, 8adddird 10267 . . . . . . . . . . . 12 (𝜑 → ((𝑁 + (1 / 2)) · 𝐴) = ((𝑁 · 𝐴) + ((1 / 2) · 𝐴)))
164163oveq1d 6808 . . . . . . . . . . 11 (𝜑 → (((𝑁 + (1 / 2)) · 𝐴) + ((1 / 2) · 𝐴)) = (((𝑁 · 𝐴) + ((1 / 2) · 𝐴)) + ((1 / 2) · 𝐴)))
165139, 160, 160addassd 10264 . . . . . . . . . . 11 (𝜑 → (((𝑁 · 𝐴) + ((1 / 2) · 𝐴)) + ((1 / 2) · 𝐴)) = ((𝑁 · 𝐴) + (((1 / 2) · 𝐴) + ((1 / 2) · 𝐴))))
1662, 2, 8adddird 10267 . . . . . . . . . . . . . 14 (𝜑 → (((1 / 2) + (1 / 2)) · 𝐴) = (((1 / 2) · 𝐴) + ((1 / 2) · 𝐴)))
16712halvesd 11480 . . . . . . . . . . . . . . 15 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
168167oveq1d 6808 . . . . . . . . . . . . . 14 (𝜑 → (((1 / 2) + (1 / 2)) · 𝐴) = (1 · 𝐴))
169166, 168eqtr3d 2807 . . . . . . . . . . . . 13 (𝜑 → (((1 / 2) · 𝐴) + ((1 / 2) · 𝐴)) = (1 · 𝐴))
170169oveq2d 6809 . . . . . . . . . . . 12 (𝜑 → ((𝑁 · 𝐴) + (((1 / 2) · 𝐴) + ((1 / 2) · 𝐴))) = ((𝑁 · 𝐴) + (1 · 𝐴)))
171115, 1, 8adddird 10267 . . . . . . . . . . . 12 (𝜑 → ((𝑁 + 1) · 𝐴) = ((𝑁 · 𝐴) + (1 · 𝐴)))
172170, 171eqtr4d 2808 . . . . . . . . . . 11 (𝜑 → ((𝑁 · 𝐴) + (((1 / 2) · 𝐴) + ((1 / 2) · 𝐴))) = ((𝑁 + 1) · 𝐴))
173164, 165, 1723eqtrrd 2810 . . . . . . . . . 10 (𝜑 → ((𝑁 + 1) · 𝐴) = (((𝑁 + (1 / 2)) · 𝐴) + ((1 / 2) · 𝐴)))
174173fveq2d 6336 . . . . . . . . 9 (𝜑 → (sin‘((𝑁 + 1) · 𝐴)) = (sin‘(((𝑁 + (1 / 2)) · 𝐴) + ((1 / 2) · 𝐴))))
175163oveq1d 6808 . . . . . . . . . . 11 (𝜑 → (((𝑁 + (1 / 2)) · 𝐴) − ((1 / 2) · 𝐴)) = (((𝑁 · 𝐴) + ((1 / 2) · 𝐴)) − ((1 / 2) · 𝐴)))
176139, 160pncand 10595 . . . . . . . . . . 11 (𝜑 → (((𝑁 · 𝐴) + ((1 / 2) · 𝐴)) − ((1 / 2) · 𝐴)) = (𝑁 · 𝐴))
177175, 176eqtr2d 2806 . . . . . . . . . 10 (𝜑 → (𝑁 · 𝐴) = (((𝑁 + (1 / 2)) · 𝐴) − ((1 / 2) · 𝐴)))
178177fveq2d 6336 . . . . . . . . 9 (𝜑 → (sin‘(𝑁 · 𝐴)) = (sin‘(((𝑁 + (1 / 2)) · 𝐴) − ((1 / 2) · 𝐴))))
179174, 178oveq12d 6811 . . . . . . . 8 (𝜑 → ((sin‘((𝑁 + 1) · 𝐴)) + (sin‘(𝑁 · 𝐴))) = ((sin‘(((𝑁 + (1 / 2)) · 𝐴) + ((1 / 2) · 𝐴))) + (sin‘(((𝑁 + (1 / 2)) · 𝐴) − ((1 / 2) · 𝐴)))))
180179oveq1d 6808 . . . . . . 7 (𝜑 → (((sin‘((𝑁 + 1) · 𝐴)) + (sin‘(𝑁 · 𝐴))) / 2) = (((sin‘(((𝑁 + (1 / 2)) · 𝐴) + ((1 / 2) · 𝐴))) + (sin‘(((𝑁 + (1 / 2)) · 𝐴) − ((1 / 2) · 𝐴)))) / 2))
181162, 180eqtr4d 2808 . . . . . 6 (𝜑 → ((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) = (((sin‘((𝑁 + 1) · 𝐴)) + (sin‘(𝑁 · 𝐴))) / 2))
182148oveq1d 6808 . . . . . 6 (𝜑 → (((sin‘((𝑁 + 1) · 𝐴)) + (sin‘(𝑁 · 𝐴))) / 2) = (((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴))) / 2))
183140, 137addcld 10261 . . . . . . 7 (𝜑 → ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴))) ∈ ℂ)
184183, 52, 59divrec2d 11007 . . . . . 6 (𝜑 → (((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴))) / 2) = ((1 / 2) · ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴)))))
185181, 182, 1843eqtrrd 2810 . . . . 5 (𝜑 → ((1 / 2) · ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴)))) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))))
186185oveq1d 6808 . . . 4 (𝜑 → (((1 / 2) · ((sin‘(𝑁 · 𝐴)) + (sin‘((𝑁 + 1) · 𝐴)))) / (sin‘𝐴)) = (((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) / (sin‘𝐴)))
1878, 52, 59divcan2d 11005 . . . . . . . . 9 (𝜑 → (2 · (𝐴 / 2)) = 𝐴)
188187eqcomd 2777 . . . . . . . 8 (𝜑𝐴 = (2 · (𝐴 / 2)))
189188fveq2d 6336 . . . . . . 7 (𝜑 → (sin‘𝐴) = (sin‘(2 · (𝐴 / 2))))
1908halfcld 11479 . . . . . . . 8 (𝜑 → (𝐴 / 2) ∈ ℂ)
191 sin2t 15113 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
192190, 191syl 17 . . . . . . 7 (𝜑 → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
193189, 192eqtrd 2805 . . . . . 6 (𝜑 → (sin‘𝐴) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
194193oveq2d 6809 . . . . 5 (𝜑 → (((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) / (sin‘𝐴)) = (((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) / (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
195190sincld 15066 . . . . . . . 8 (𝜑 → (sin‘(𝐴 / 2)) ∈ ℂ)
196190coscld 15067 . . . . . . . 8 (𝜑 → (cos‘(𝐴 / 2)) ∈ ℂ)
19752, 195, 196mulassd 10265 . . . . . . 7 (𝜑 → ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
1988, 52, 59divrec2d 11007 . . . . . . . . 9 (𝜑 → (𝐴 / 2) = ((1 / 2) · 𝐴))
199198fveq2d 6336 . . . . . . . 8 (𝜑 → (cos‘(𝐴 / 2)) = (cos‘((1 / 2) · 𝐴)))
200199oveq2d 6809 . . . . . . 7 (𝜑 → ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))) = ((2 · (sin‘(𝐴 / 2))) · (cos‘((1 / 2) · 𝐴))))
201197, 200eqtr3d 2807 . . . . . 6 (𝜑 → (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) = ((2 · (sin‘(𝐴 / 2))) · (cos‘((1 / 2) · 𝐴))))
202201oveq2d 6809 . . . . 5 (𝜑 → (((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) / (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) = (((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) / ((2 · (sin‘(𝐴 / 2))) · (cos‘((1 / 2) · 𝐴)))))
203159sincld 15066 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝐴)) ∈ ℂ)
20452, 195mulcld 10262 . . . . . 6 (𝜑 → (2 · (sin‘(𝐴 / 2))) ∈ ℂ)
205160coscld 15067 . . . . . 6 (𝜑 → (cos‘((1 / 2) · 𝐴)) ∈ ℂ)
206195, 196mulcld 10262 . . . . . . . . 9 (𝜑 → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℂ)
207193, 15eqnetrrd 3011 . . . . . . . . 9 (𝜑 → (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) ≠ 0)
20852, 206, 207mulne0bbd 10885 . . . . . . . 8 (𝜑 → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ≠ 0)
209195, 196, 208mulne0bad 10884 . . . . . . 7 (𝜑 → (sin‘(𝐴 / 2)) ≠ 0)
21052, 195, 59, 209mulne0d 10881 . . . . . 6 (𝜑 → (2 · (sin‘(𝐴 / 2))) ≠ 0)
211195, 196, 208mulne0bbd 10885 . . . . . . 7 (𝜑 → (cos‘(𝐴 / 2)) ≠ 0)
212199, 211eqnetrrd 3011 . . . . . 6 (𝜑 → (cos‘((1 / 2) · 𝐴)) ≠ 0)
213203, 204, 205, 210, 212divcan5rd 11030 . . . . 5 (𝜑 → (((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) / ((2 · (sin‘(𝐴 / 2))) · (cos‘((1 / 2) · 𝐴)))) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / (2 · (sin‘(𝐴 / 2)))))
214194, 202, 2133eqtrd 2809 . . . 4 (𝜑 → (((sin‘((𝑁 + (1 / 2)) · 𝐴)) · (cos‘((1 / 2) · 𝐴))) / (sin‘𝐴)) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / (2 · (sin‘(𝐴 / 2)))))
215154, 186, 2143eqtrd 2809 . . 3 (𝜑 → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / (2 · (sin‘(𝐴 / 2)))))
216215oveq1d 6808 . 2 (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = (((sin‘((𝑁 + (1 / 2)) · 𝐴)) / (2 · (sin‘(𝐴 / 2)))) / π))
217 picn 24432 . . . 4 π ∈ ℂ
218217a1i 11 . . 3 (𝜑 → π ∈ ℂ)
219 pire 24431 . . . . 5 π ∈ ℝ
220 pipos 24433 . . . . 5 0 < π
221219, 220gt0ne0ii 10766 . . . 4 π ≠ 0
222221a1i 11 . . 3 (𝜑 → π ≠ 0)
223203, 204, 218, 210, 222divdiv32d 11028 . 2 (𝜑 → (((sin‘((𝑁 + (1 / 2)) · 𝐴)) / (2 · (sin‘(𝐴 / 2)))) / π) = (((sin‘((𝑁 + (1 / 2)) · 𝐴)) / π) / (2 · (sin‘(𝐴 / 2)))))
224203, 218, 204, 222, 210divdiv1d 11034 . . 3 (𝜑 → (((sin‘((𝑁 + (1 / 2)) · 𝐴)) / π) / (2 · (sin‘(𝐴 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / (π · (2 · (sin‘(𝐴 / 2))))))
225218, 52, 195mulassd 10265 . . . . 5 (𝜑 → ((π · 2) · (sin‘(𝐴 / 2))) = (π · (2 · (sin‘(𝐴 / 2)))))
226218, 52mulcomd 10263 . . . . . 6 (𝜑 → (π · 2) = (2 · π))
227226oveq1d 6808 . . . . 5 (𝜑 → ((π · 2) · (sin‘(𝐴 / 2))) = ((2 · π) · (sin‘(𝐴 / 2))))
228225, 227eqtr3d 2807 . . . 4 (𝜑 → (π · (2 · (sin‘(𝐴 / 2)))) = ((2 · π) · (sin‘(𝐴 / 2))))
229228oveq2d 6809 . . 3 (𝜑 → ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / (π · (2 · (sin‘(𝐴 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
230224, 229eqtrd 2805 . 2 (𝜑 → (((sin‘((𝑁 + (1 / 2)) · 𝐴)) / π) / (2 · (sin‘(𝐴 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
231216, 223, 2303eqtrd 2809 1 (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468  -cneg 10469   / cdiv 10886  cn 11222  2c2 11272  cuz 11888  ...cfz 12533  Σcsu 14624  sincsin 15000  cosccos 15001  πcpi 15003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851
This theorem is referenced by:  dirkertrigeq  40835
  Copyright terms: Public domain W3C validator