![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptdiv | Structured version Visualization version GIF version |
Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvmptdiv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptdiv.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptdiv.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptdiv.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptdiv.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (ℂ ∖ {0})) |
dvmptdiv.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) |
dvmptdiv.dc | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) |
Ref | Expression |
---|---|
dvmptdiv | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptdiv.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
2 | dvmptdiv.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (ℂ ∖ {0})) | |
3 | 2 | eldifad 3922 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
4 | eldifsn 4747 | . . . . . . 7 ⊢ (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) | |
5 | 2, 4 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) |
6 | 5 | simprd 496 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ≠ 0) |
7 | 1, 3, 6 | divrecd 11934 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
8 | 7 | mpteq2dva 5205 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐶)))) |
9 | 8 | oveq2d 7373 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐶))))) |
10 | dvmptdiv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
11 | dvmptdiv.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
12 | dvmptdiv.da | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
13 | 3, 6 | reccld 11924 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 / 𝐶) ∈ ℂ) |
14 | 1cnd 11150 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℂ) | |
15 | dvmptdiv.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) | |
16 | 14, 15 | mulcld 11175 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · 𝐷) ∈ ℂ) |
17 | 3 | sqcld 14049 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶↑2) ∈ ℂ) |
18 | 6 | neneqd 2948 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝐶 = 0) |
19 | sqeq0 14025 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) | |
20 | 3, 19 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) |
21 | 18, 20 | mtbird 324 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ (𝐶↑2) = 0) |
22 | 21 | neqned 2950 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶↑2) ≠ 0) |
23 | 16, 17, 22 | divcld 11931 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((1 · 𝐷) / (𝐶↑2)) ∈ ℂ) |
24 | 23 | negcld 11499 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → -((1 · 𝐷) / (𝐶↑2)) ∈ ℂ) |
25 | 1cnd 11150 | . . . 4 ⊢ (𝜑 → 1 ∈ ℂ) | |
26 | dvmptdiv.dc | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) | |
27 | 10, 25, 2, 15, 26 | dvrecg 25337 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (1 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ -((1 · 𝐷) / (𝐶↑2)))) |
28 | 10, 1, 11, 12, 13, 24, 27 | dvmptmul 25325 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐶)))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)))) |
29 | 10, 1, 11, 12 | dvmptcl 25323 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
30 | 29, 3 | mulcld 11175 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) ∈ ℂ) |
31 | 30, 17, 22 | divcld 11931 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) ∈ ℂ) |
32 | 15, 1 | mulcld 11175 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 · 𝐴) ∈ ℂ) |
33 | 32, 17, 22 | divcld 11931 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) ∈ ℂ) |
34 | 31, 33 | negsubd 11518 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2)))) |
35 | 29, 14, 3, 6 | div12d 11967 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · (1 / 𝐶)) = (1 · (𝐵 / 𝐶))) |
36 | 29, 3, 6 | divcld 11931 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 / 𝐶) ∈ ℂ) |
37 | 36 | mulid2d 11173 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · (𝐵 / 𝐶)) = (𝐵 / 𝐶)) |
38 | 3 | sqvald 14048 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶↑2) = (𝐶 · 𝐶)) |
39 | 38 | oveq2d 7373 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) = ((𝐵 · 𝐶) / (𝐶 · 𝐶))) |
40 | 29, 3, 3, 6, 6 | divcan5rd 11958 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · 𝐶) / (𝐶 · 𝐶)) = (𝐵 / 𝐶)) |
41 | 39, 40 | eqtr2d 2777 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 / 𝐶) = ((𝐵 · 𝐶) / (𝐶↑2))) |
42 | 35, 37, 41 | 3eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · (1 / 𝐶)) = ((𝐵 · 𝐶) / (𝐶↑2))) |
43 | 15 | mulid2d 11173 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · 𝐷) = 𝐷) |
44 | 43 | oveq1d 7372 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((1 · 𝐷) / (𝐶↑2)) = (𝐷 / (𝐶↑2))) |
45 | 44 | negeqd 11395 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → -((1 · 𝐷) / (𝐶↑2)) = -(𝐷 / (𝐶↑2))) |
46 | 45 | oveq1d 7372 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = (-(𝐷 / (𝐶↑2)) · 𝐴)) |
47 | 15, 17, 22 | divcld 11931 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 / (𝐶↑2)) ∈ ℂ) |
48 | 47, 1 | mulneg1d 11608 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (-(𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 / (𝐶↑2)) · 𝐴)) |
49 | 15, 1, 17, 22 | div23d 11968 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) = ((𝐷 / (𝐶↑2)) · 𝐴)) |
50 | 49 | eqcomd 2742 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐷 / (𝐶↑2)) · 𝐴) = ((𝐷 · 𝐴) / (𝐶↑2))) |
51 | 50 | negeqd 11395 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → -((𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2))) |
52 | 46, 48, 51 | 3eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2))) |
53 | 42, 52 | oveq12d 7375 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2)))) |
54 | 30, 32, 17, 22 | divsubdird 11970 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2)))) |
55 | 34, 53, 54 | 3eqtr4d 2786 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))) |
56 | 55 | mpteq2dva 5205 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) |
57 | 9, 28, 56 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3907 {csn 4586 {cpr 4588 ↦ cmpt 5188 (class class class)co 7357 ℂcc 11049 ℝcr 11050 0cc0 11051 1c1 11052 + caddc 11054 · cmul 11056 − cmin 11385 -cneg 11386 / cdiv 11812 2c2 12208 ↑cexp 13967 D cdv 25227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-icc 13271 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-t1 22665 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 |
This theorem is referenced by: dvdivf 44153 dvdivbd 44154 fourierdlem56 44393 fourierdlem57 44394 |
Copyright terms: Public domain | W3C validator |