MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptdiv Structured version   Visualization version   GIF version

Theorem dvmptdiv 25895
Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptdiv.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptdiv.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptdiv.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptdiv.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptdiv.c ((𝜑𝑥𝑋) → 𝐶 ∈ (ℂ ∖ {0}))
dvmptdiv.d ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
dvmptdiv.dc (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptdiv (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvmptdiv
StepHypRef Expression
1 dvmptdiv.a . . . . 5 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
2 dvmptdiv.c . . . . . 6 ((𝜑𝑥𝑋) → 𝐶 ∈ (ℂ ∖ {0}))
32eldifad 3917 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
4 eldifsn 4740 . . . . . . 7 (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
52, 4sylib 218 . . . . . 6 ((𝜑𝑥𝑋) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
65simprd 495 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ≠ 0)
71, 3, 6divrecd 11922 . . . 4 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
87mpteq2dva 5188 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) = (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶))))
98oveq2d 7369 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑆 D (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶)))))
10 dvmptdiv.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
11 dvmptdiv.b . . 3 ((𝜑𝑥𝑋) → 𝐵𝑉)
12 dvmptdiv.da . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
133, 6reccld 11912 . . 3 ((𝜑𝑥𝑋) → (1 / 𝐶) ∈ ℂ)
14 1cnd 11129 . . . . . 6 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
15 dvmptdiv.d . . . . . 6 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
1614, 15mulcld 11154 . . . . 5 ((𝜑𝑥𝑋) → (1 · 𝐷) ∈ ℂ)
173sqcld 14070 . . . . 5 ((𝜑𝑥𝑋) → (𝐶↑2) ∈ ℂ)
186neneqd 2930 . . . . . . 7 ((𝜑𝑥𝑋) → ¬ 𝐶 = 0)
19 sqeq0 14046 . . . . . . . 8 (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
203, 19syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
2118, 20mtbird 325 . . . . . 6 ((𝜑𝑥𝑋) → ¬ (𝐶↑2) = 0)
2221neqned 2932 . . . . 5 ((𝜑𝑥𝑋) → (𝐶↑2) ≠ 0)
2316, 17, 22divcld 11919 . . . 4 ((𝜑𝑥𝑋) → ((1 · 𝐷) / (𝐶↑2)) ∈ ℂ)
2423negcld 11481 . . 3 ((𝜑𝑥𝑋) → -((1 · 𝐷) / (𝐶↑2)) ∈ ℂ)
25 1cnd 11129 . . . 4 (𝜑 → 1 ∈ ℂ)
26 dvmptdiv.dc . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
2710, 25, 2, 15, 26dvrecg 25894 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (1 / 𝐶))) = (𝑥𝑋 ↦ -((1 · 𝐷) / (𝐶↑2))))
2810, 1, 11, 12, 13, 24, 27dvmptmul 25882 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶)))) = (𝑥𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))))
2910, 1, 11, 12dvmptcl 25880 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
3029, 3mulcld 11154 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) ∈ ℂ)
3130, 17, 22divcld 11919 . . . . 5 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) ∈ ℂ)
3215, 1mulcld 11154 . . . . . 6 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
3332, 17, 22divcld 11919 . . . . 5 ((𝜑𝑥𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) ∈ ℂ)
3431, 33negsubd 11500 . . . 4 ((𝜑𝑥𝑋) → (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2))))
3529, 14, 3, 6div12d 11955 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 · (1 / 𝐶)) = (1 · (𝐵 / 𝐶)))
3629, 3, 6divcld 11919 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵 / 𝐶) ∈ ℂ)
3736mullidd 11152 . . . . . 6 ((𝜑𝑥𝑋) → (1 · (𝐵 / 𝐶)) = (𝐵 / 𝐶))
383sqvald 14069 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐶↑2) = (𝐶 · 𝐶))
3938oveq2d 7369 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) = ((𝐵 · 𝐶) / (𝐶 · 𝐶)))
4029, 3, 3, 6, 6divcan5rd 11946 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶 · 𝐶)) = (𝐵 / 𝐶))
4139, 40eqtr2d 2765 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 / 𝐶) = ((𝐵 · 𝐶) / (𝐶↑2)))
4235, 37, 413eqtrd 2768 . . . . 5 ((𝜑𝑥𝑋) → (𝐵 · (1 / 𝐶)) = ((𝐵 · 𝐶) / (𝐶↑2)))
4315mullidd 11152 . . . . . . . . 9 ((𝜑𝑥𝑋) → (1 · 𝐷) = 𝐷)
4443oveq1d 7368 . . . . . . . 8 ((𝜑𝑥𝑋) → ((1 · 𝐷) / (𝐶↑2)) = (𝐷 / (𝐶↑2)))
4544negeqd 11376 . . . . . . 7 ((𝜑𝑥𝑋) → -((1 · 𝐷) / (𝐶↑2)) = -(𝐷 / (𝐶↑2)))
4645oveq1d 7368 . . . . . 6 ((𝜑𝑥𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = (-(𝐷 / (𝐶↑2)) · 𝐴))
4715, 17, 22divcld 11919 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐷 / (𝐶↑2)) ∈ ℂ)
4847, 1mulneg1d 11592 . . . . . 6 ((𝜑𝑥𝑋) → (-(𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 / (𝐶↑2)) · 𝐴))
4915, 1, 17, 22div23d 11956 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) = ((𝐷 / (𝐶↑2)) · 𝐴))
5049eqcomd 2735 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐷 / (𝐶↑2)) · 𝐴) = ((𝐷 · 𝐴) / (𝐶↑2)))
5150negeqd 11376 . . . . . 6 ((𝜑𝑥𝑋) → -((𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2)))
5246, 48, 513eqtrd 2768 . . . . 5 ((𝜑𝑥𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2)))
5342, 52oveq12d 7371 . . . 4 ((𝜑𝑥𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))))
5430, 32, 17, 22divsubdird 11958 . . . 4 ((𝜑𝑥𝑋) → (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2))))
5534, 53, 543eqtr4d 2774 . . 3 ((𝜑𝑥𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))
5655mpteq2dva 5188 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
579, 28, 563eqtrd 2768 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3902  {csn 4579  {cpr 4581  cmpt 5176  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11366  -cneg 11367   / cdiv 11796  2c2 12202  cexp 13987   D cdv 25781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13274  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-t1 23218  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785
This theorem is referenced by:  dvdivf  45923  dvdivbd  45924  fourierdlem56  46163  fourierdlem57  46164
  Copyright terms: Public domain W3C validator