MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptdiv Structured version   Visualization version   GIF version

Theorem dvmptdiv 24574
Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptdiv.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptdiv.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptdiv.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptdiv.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptdiv.c ((𝜑𝑥𝑋) → 𝐶 ∈ (ℂ ∖ {0}))
dvmptdiv.d ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
dvmptdiv.dc (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptdiv (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvmptdiv
StepHypRef Expression
1 dvmptdiv.a . . . . 5 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
2 dvmptdiv.c . . . . . 6 ((𝜑𝑥𝑋) → 𝐶 ∈ (ℂ ∖ {0}))
32eldifad 3951 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
4 eldifsn 4722 . . . . . . 7 (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
52, 4sylib 220 . . . . . 6 ((𝜑𝑥𝑋) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
65simprd 498 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ≠ 0)
71, 3, 6divrecd 11422 . . . 4 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
87mpteq2dva 5164 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) = (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶))))
98oveq2d 7175 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑆 D (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶)))))
10 dvmptdiv.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
11 dvmptdiv.b . . 3 ((𝜑𝑥𝑋) → 𝐵𝑉)
12 dvmptdiv.da . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
133, 6reccld 11412 . . 3 ((𝜑𝑥𝑋) → (1 / 𝐶) ∈ ℂ)
14 1cnd 10639 . . . . . 6 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
15 dvmptdiv.d . . . . . 6 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
1614, 15mulcld 10664 . . . . 5 ((𝜑𝑥𝑋) → (1 · 𝐷) ∈ ℂ)
173sqcld 13511 . . . . 5 ((𝜑𝑥𝑋) → (𝐶↑2) ∈ ℂ)
186neneqd 3024 . . . . . . 7 ((𝜑𝑥𝑋) → ¬ 𝐶 = 0)
19 sqeq0 13489 . . . . . . . 8 (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
203, 19syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
2118, 20mtbird 327 . . . . . 6 ((𝜑𝑥𝑋) → ¬ (𝐶↑2) = 0)
2221neqned 3026 . . . . 5 ((𝜑𝑥𝑋) → (𝐶↑2) ≠ 0)
2316, 17, 22divcld 11419 . . . 4 ((𝜑𝑥𝑋) → ((1 · 𝐷) / (𝐶↑2)) ∈ ℂ)
2423negcld 10987 . . 3 ((𝜑𝑥𝑋) → -((1 · 𝐷) / (𝐶↑2)) ∈ ℂ)
25 1cnd 10639 . . . 4 (𝜑 → 1 ∈ ℂ)
26 dvmptdiv.dc . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
2710, 25, 2, 15, 26dvrecg 24573 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (1 / 𝐶))) = (𝑥𝑋 ↦ -((1 · 𝐷) / (𝐶↑2))))
2810, 1, 11, 12, 13, 24, 27dvmptmul 24561 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶)))) = (𝑥𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))))
2910, 1, 11, 12dvmptcl 24559 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
3029, 3mulcld 10664 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) ∈ ℂ)
3130, 17, 22divcld 11419 . . . . 5 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) ∈ ℂ)
3215, 1mulcld 10664 . . . . . 6 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
3332, 17, 22divcld 11419 . . . . 5 ((𝜑𝑥𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) ∈ ℂ)
3431, 33negsubd 11006 . . . 4 ((𝜑𝑥𝑋) → (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2))))
3529, 14, 3, 6div12d 11455 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 · (1 / 𝐶)) = (1 · (𝐵 / 𝐶)))
3629, 3, 6divcld 11419 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵 / 𝐶) ∈ ℂ)
3736mulid2d 10662 . . . . . 6 ((𝜑𝑥𝑋) → (1 · (𝐵 / 𝐶)) = (𝐵 / 𝐶))
383sqvald 13510 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐶↑2) = (𝐶 · 𝐶))
3938oveq2d 7175 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) = ((𝐵 · 𝐶) / (𝐶 · 𝐶)))
4029, 3, 3, 6, 6divcan5rd 11446 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶 · 𝐶)) = (𝐵 / 𝐶))
4139, 40eqtr2d 2860 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 / 𝐶) = ((𝐵 · 𝐶) / (𝐶↑2)))
4235, 37, 413eqtrd 2863 . . . . 5 ((𝜑𝑥𝑋) → (𝐵 · (1 / 𝐶)) = ((𝐵 · 𝐶) / (𝐶↑2)))
4315mulid2d 10662 . . . . . . . . 9 ((𝜑𝑥𝑋) → (1 · 𝐷) = 𝐷)
4443oveq1d 7174 . . . . . . . 8 ((𝜑𝑥𝑋) → ((1 · 𝐷) / (𝐶↑2)) = (𝐷 / (𝐶↑2)))
4544negeqd 10883 . . . . . . 7 ((𝜑𝑥𝑋) → -((1 · 𝐷) / (𝐶↑2)) = -(𝐷 / (𝐶↑2)))
4645oveq1d 7174 . . . . . 6 ((𝜑𝑥𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = (-(𝐷 / (𝐶↑2)) · 𝐴))
4715, 17, 22divcld 11419 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐷 / (𝐶↑2)) ∈ ℂ)
4847, 1mulneg1d 11096 . . . . . 6 ((𝜑𝑥𝑋) → (-(𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 / (𝐶↑2)) · 𝐴))
4915, 1, 17, 22div23d 11456 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) = ((𝐷 / (𝐶↑2)) · 𝐴))
5049eqcomd 2830 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐷 / (𝐶↑2)) · 𝐴) = ((𝐷 · 𝐴) / (𝐶↑2)))
5150negeqd 10883 . . . . . 6 ((𝜑𝑥𝑋) → -((𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2)))
5246, 48, 513eqtrd 2863 . . . . 5 ((𝜑𝑥𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2)))
5342, 52oveq12d 7177 . . . 4 ((𝜑𝑥𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))))
5430, 32, 17, 22divsubdird 11458 . . . 4 ((𝜑𝑥𝑋) → (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2))))
5534, 53, 543eqtr4d 2869 . . 3 ((𝜑𝑥𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))
5655mpteq2dva 5164 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
579, 28, 563eqtrd 2863 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  cdif 3936  {csn 4570  {cpr 4572  cmpt 5149  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cmin 10873  -cneg 10874   / cdiv 11300  2c2 11695  cexp 13432   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-t1 21925  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468
This theorem is referenced by:  dvdivf  42213  dvdivbd  42214  fourierdlem56  42454  fourierdlem57  42455
  Copyright terms: Public domain W3C validator