| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptdiv | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvmptdiv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptdiv.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptdiv.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptdiv.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| dvmptdiv.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (ℂ ∖ {0})) |
| dvmptdiv.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) |
| dvmptdiv.dc | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) |
| Ref | Expression |
|---|---|
| dvmptdiv | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptdiv.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 2 | dvmptdiv.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (ℂ ∖ {0})) | |
| 3 | 2 | eldifad 3923 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
| 4 | eldifsn 4746 | . . . . . . 7 ⊢ (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) | |
| 5 | 2, 4 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) |
| 6 | 5 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ≠ 0) |
| 7 | 1, 3, 6 | divrecd 11937 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
| 8 | 7 | mpteq2dva 5195 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐶)))) |
| 9 | 8 | oveq2d 7385 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐶))))) |
| 10 | dvmptdiv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 11 | dvmptdiv.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 12 | dvmptdiv.da | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 13 | 3, 6 | reccld 11927 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 / 𝐶) ∈ ℂ) |
| 14 | 1cnd 11145 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℂ) | |
| 15 | dvmptdiv.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) | |
| 16 | 14, 15 | mulcld 11170 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · 𝐷) ∈ ℂ) |
| 17 | 3 | sqcld 14085 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶↑2) ∈ ℂ) |
| 18 | 6 | neneqd 2930 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝐶 = 0) |
| 19 | sqeq0 14061 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) | |
| 20 | 3, 19 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) |
| 21 | 18, 20 | mtbird 325 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ (𝐶↑2) = 0) |
| 22 | 21 | neqned 2932 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶↑2) ≠ 0) |
| 23 | 16, 17, 22 | divcld 11934 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((1 · 𝐷) / (𝐶↑2)) ∈ ℂ) |
| 24 | 23 | negcld 11496 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → -((1 · 𝐷) / (𝐶↑2)) ∈ ℂ) |
| 25 | 1cnd 11145 | . . . 4 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 26 | dvmptdiv.dc | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) | |
| 27 | 10, 25, 2, 15, 26 | dvrecg 25853 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (1 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ -((1 · 𝐷) / (𝐶↑2)))) |
| 28 | 10, 1, 11, 12, 13, 24, 27 | dvmptmul 25841 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐶)))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)))) |
| 29 | 10, 1, 11, 12 | dvmptcl 25839 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 30 | 29, 3 | mulcld 11170 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) ∈ ℂ) |
| 31 | 30, 17, 22 | divcld 11934 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) ∈ ℂ) |
| 32 | 15, 1 | mulcld 11170 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 · 𝐴) ∈ ℂ) |
| 33 | 32, 17, 22 | divcld 11934 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) ∈ ℂ) |
| 34 | 31, 33 | negsubd 11515 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2)))) |
| 35 | 29, 14, 3, 6 | div12d 11970 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · (1 / 𝐶)) = (1 · (𝐵 / 𝐶))) |
| 36 | 29, 3, 6 | divcld 11934 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 / 𝐶) ∈ ℂ) |
| 37 | 36 | mullidd 11168 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · (𝐵 / 𝐶)) = (𝐵 / 𝐶)) |
| 38 | 3 | sqvald 14084 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶↑2) = (𝐶 · 𝐶)) |
| 39 | 38 | oveq2d 7385 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) = ((𝐵 · 𝐶) / (𝐶 · 𝐶))) |
| 40 | 29, 3, 3, 6, 6 | divcan5rd 11961 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · 𝐶) / (𝐶 · 𝐶)) = (𝐵 / 𝐶)) |
| 41 | 39, 40 | eqtr2d 2765 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 / 𝐶) = ((𝐵 · 𝐶) / (𝐶↑2))) |
| 42 | 35, 37, 41 | 3eqtrd 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · (1 / 𝐶)) = ((𝐵 · 𝐶) / (𝐶↑2))) |
| 43 | 15 | mullidd 11168 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · 𝐷) = 𝐷) |
| 44 | 43 | oveq1d 7384 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((1 · 𝐷) / (𝐶↑2)) = (𝐷 / (𝐶↑2))) |
| 45 | 44 | negeqd 11391 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → -((1 · 𝐷) / (𝐶↑2)) = -(𝐷 / (𝐶↑2))) |
| 46 | 45 | oveq1d 7384 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = (-(𝐷 / (𝐶↑2)) · 𝐴)) |
| 47 | 15, 17, 22 | divcld 11934 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 / (𝐶↑2)) ∈ ℂ) |
| 48 | 47, 1 | mulneg1d 11607 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (-(𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 / (𝐶↑2)) · 𝐴)) |
| 49 | 15, 1, 17, 22 | div23d 11971 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) = ((𝐷 / (𝐶↑2)) · 𝐴)) |
| 50 | 49 | eqcomd 2735 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐷 / (𝐶↑2)) · 𝐴) = ((𝐷 · 𝐴) / (𝐶↑2))) |
| 51 | 50 | negeqd 11391 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → -((𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2))) |
| 52 | 46, 48, 51 | 3eqtrd 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2))) |
| 53 | 42, 52 | oveq12d 7387 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2)))) |
| 54 | 30, 32, 17, 22 | divsubdird 11973 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2)))) |
| 55 | 34, 53, 54 | 3eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))) |
| 56 | 55 | mpteq2dva 5195 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) |
| 57 | 9, 28, 56 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 {cpr 4587 ↦ cmpt 5183 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 − cmin 11381 -cneg 11382 / cdiv 11811 2c2 12217 ↑cexp 14002 D cdv 25740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-t1 23177 df-haus 23178 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 df-limc 25743 df-dv 25744 |
| This theorem is referenced by: dvdivf 45893 dvdivbd 45894 fourierdlem56 46133 fourierdlem57 46134 |
| Copyright terms: Public domain | W3C validator |