MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptdiv Structured version   Visualization version   GIF version

Theorem dvmptdiv 24143
Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptdiv.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptdiv.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptdiv.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptdiv.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptdiv.c ((𝜑𝑥𝑋) → 𝐶 ∈ (ℂ ∖ {0}))
dvmptdiv.d ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
dvmptdiv.dc (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptdiv (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvmptdiv
StepHypRef Expression
1 dvmptdiv.a . . . . 5 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
2 dvmptdiv.c . . . . . 6 ((𝜑𝑥𝑋) → 𝐶 ∈ (ℂ ∖ {0}))
32eldifad 3810 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
4 eldifsn 4538 . . . . . . 7 (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
52, 4sylib 210 . . . . . 6 ((𝜑𝑥𝑋) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
65simprd 491 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ≠ 0)
71, 3, 6divrecd 11137 . . . 4 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
87mpteq2dva 4969 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) = (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶))))
98oveq2d 6926 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑆 D (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶)))))
10 dvmptdiv.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
11 dvmptdiv.b . . 3 ((𝜑𝑥𝑋) → 𝐵𝑉)
12 dvmptdiv.da . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
133, 6reccld 11127 . . 3 ((𝜑𝑥𝑋) → (1 / 𝐶) ∈ ℂ)
14 1cnd 10358 . . . . . 6 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
15 dvmptdiv.d . . . . . 6 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
1614, 15mulcld 10384 . . . . 5 ((𝜑𝑥𝑋) → (1 · 𝐷) ∈ ℂ)
173sqcld 13307 . . . . 5 ((𝜑𝑥𝑋) → (𝐶↑2) ∈ ℂ)
186neneqd 3004 . . . . . . 7 ((𝜑𝑥𝑋) → ¬ 𝐶 = 0)
19 sqeq0 13228 . . . . . . . 8 (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
203, 19syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
2118, 20mtbird 317 . . . . . 6 ((𝜑𝑥𝑋) → ¬ (𝐶↑2) = 0)
2221neqned 3006 . . . . 5 ((𝜑𝑥𝑋) → (𝐶↑2) ≠ 0)
2316, 17, 22divcld 11134 . . . 4 ((𝜑𝑥𝑋) → ((1 · 𝐷) / (𝐶↑2)) ∈ ℂ)
2423negcld 10707 . . 3 ((𝜑𝑥𝑋) → -((1 · 𝐷) / (𝐶↑2)) ∈ ℂ)
25 1cnd 10358 . . . 4 (𝜑 → 1 ∈ ℂ)
26 dvmptdiv.dc . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
2710, 25, 2, 15, 26dvrecg 24142 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (1 / 𝐶))) = (𝑥𝑋 ↦ -((1 · 𝐷) / (𝐶↑2))))
2810, 1, 11, 12, 13, 24, 27dvmptmul 24130 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶)))) = (𝑥𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))))
2910, 1, 11, 12dvmptcl 24128 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
3029, 3mulcld 10384 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) ∈ ℂ)
3130, 17, 22divcld 11134 . . . . 5 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) ∈ ℂ)
3215, 1mulcld 10384 . . . . . 6 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
3332, 17, 22divcld 11134 . . . . 5 ((𝜑𝑥𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) ∈ ℂ)
3431, 33negsubd 10726 . . . 4 ((𝜑𝑥𝑋) → (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2))))
3529, 14, 3, 6div12d 11170 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 · (1 / 𝐶)) = (1 · (𝐵 / 𝐶)))
3629, 3, 6divcld 11134 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵 / 𝐶) ∈ ℂ)
3736mulid2d 10382 . . . . . 6 ((𝜑𝑥𝑋) → (1 · (𝐵 / 𝐶)) = (𝐵 / 𝐶))
383sqvald 13306 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐶↑2) = (𝐶 · 𝐶))
3938oveq2d 6926 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) = ((𝐵 · 𝐶) / (𝐶 · 𝐶)))
4029, 3, 3, 6, 6divcan5rd 11161 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶 · 𝐶)) = (𝐵 / 𝐶))
4139, 40eqtr2d 2862 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 / 𝐶) = ((𝐵 · 𝐶) / (𝐶↑2)))
4235, 37, 413eqtrd 2865 . . . . 5 ((𝜑𝑥𝑋) → (𝐵 · (1 / 𝐶)) = ((𝐵 · 𝐶) / (𝐶↑2)))
4315mulid2d 10382 . . . . . . . . 9 ((𝜑𝑥𝑋) → (1 · 𝐷) = 𝐷)
4443oveq1d 6925 . . . . . . . 8 ((𝜑𝑥𝑋) → ((1 · 𝐷) / (𝐶↑2)) = (𝐷 / (𝐶↑2)))
4544negeqd 10602 . . . . . . 7 ((𝜑𝑥𝑋) → -((1 · 𝐷) / (𝐶↑2)) = -(𝐷 / (𝐶↑2)))
4645oveq1d 6925 . . . . . 6 ((𝜑𝑥𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = (-(𝐷 / (𝐶↑2)) · 𝐴))
4715, 17, 22divcld 11134 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐷 / (𝐶↑2)) ∈ ℂ)
4847, 1mulneg1d 10814 . . . . . 6 ((𝜑𝑥𝑋) → (-(𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 / (𝐶↑2)) · 𝐴))
4915, 1, 17, 22div23d 11171 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) = ((𝐷 / (𝐶↑2)) · 𝐴))
5049eqcomd 2831 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐷 / (𝐶↑2)) · 𝐴) = ((𝐷 · 𝐴) / (𝐶↑2)))
5150negeqd 10602 . . . . . 6 ((𝜑𝑥𝑋) → -((𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2)))
5246, 48, 513eqtrd 2865 . . . . 5 ((𝜑𝑥𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2)))
5342, 52oveq12d 6928 . . . 4 ((𝜑𝑥𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))))
5430, 32, 17, 22divsubdird 11173 . . . 4 ((𝜑𝑥𝑋) → (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2))))
5534, 53, 543eqtr4d 2871 . . 3 ((𝜑𝑥𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))
5655mpteq2dva 4969 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
579, 28, 563eqtrd 2865 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wne 2999  cdif 3795  {csn 4399  {cpr 4401  cmpt 4954  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264  cmin 10592  -cneg 10593   / cdiv 11016  2c2 11413  cexp 13161   D cdv 24033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-icc 12477  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-mulg 17902  df-cntz 18107  df-cmn 18555  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-fbas 20110  df-fg 20111  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cld 21201  df-ntr 21202  df-cls 21203  df-nei 21280  df-lp 21318  df-perf 21319  df-cn 21409  df-cnp 21410  df-t1 21496  df-haus 21497  df-tx 21743  df-hmeo 21936  df-fil 22027  df-fm 22119  df-flim 22120  df-flf 22121  df-xms 22502  df-ms 22503  df-tms 22504  df-cncf 23058  df-limc 24036  df-dv 24037
This theorem is referenced by:  dvdivf  40926  dvdivbd  40927  fourierdlem56  41167  fourierdlem57  41168
  Copyright terms: Public domain W3C validator