| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptdiv | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvmptdiv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptdiv.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptdiv.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptdiv.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| dvmptdiv.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (ℂ ∖ {0})) |
| dvmptdiv.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) |
| dvmptdiv.dc | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) |
| Ref | Expression |
|---|---|
| dvmptdiv | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptdiv.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 2 | dvmptdiv.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (ℂ ∖ {0})) | |
| 3 | 2 | eldifad 3909 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
| 4 | eldifsn 4733 | . . . . . . 7 ⊢ (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) | |
| 5 | 2, 4 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) |
| 6 | 5 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ≠ 0) |
| 7 | 1, 3, 6 | divrecd 11895 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
| 8 | 7 | mpteq2dva 5179 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐶)))) |
| 9 | 8 | oveq2d 7357 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐶))))) |
| 10 | dvmptdiv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 11 | dvmptdiv.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 12 | dvmptdiv.da | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 13 | 3, 6 | reccld 11885 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 / 𝐶) ∈ ℂ) |
| 14 | 1cnd 11102 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℂ) | |
| 15 | dvmptdiv.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) | |
| 16 | 14, 15 | mulcld 11127 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · 𝐷) ∈ ℂ) |
| 17 | 3 | sqcld 14046 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶↑2) ∈ ℂ) |
| 18 | 6 | neneqd 2933 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝐶 = 0) |
| 19 | sqeq0 14022 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) | |
| 20 | 3, 19 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐶↑2) = 0 ↔ 𝐶 = 0)) |
| 21 | 18, 20 | mtbird 325 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ (𝐶↑2) = 0) |
| 22 | 21 | neqned 2935 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶↑2) ≠ 0) |
| 23 | 16, 17, 22 | divcld 11892 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((1 · 𝐷) / (𝐶↑2)) ∈ ℂ) |
| 24 | 23 | negcld 11454 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → -((1 · 𝐷) / (𝐶↑2)) ∈ ℂ) |
| 25 | 1cnd 11102 | . . . 4 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 26 | dvmptdiv.dc | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) | |
| 27 | 10, 25, 2, 15, 26 | dvrecg 25899 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (1 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ -((1 · 𝐷) / (𝐶↑2)))) |
| 28 | 10, 1, 11, 12, 13, 24, 27 | dvmptmul 25887 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐶)))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)))) |
| 29 | 10, 1, 11, 12 | dvmptcl 25885 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 30 | 29, 3 | mulcld 11127 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) ∈ ℂ) |
| 31 | 30, 17, 22 | divcld 11892 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) ∈ ℂ) |
| 32 | 15, 1 | mulcld 11127 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 · 𝐴) ∈ ℂ) |
| 33 | 32, 17, 22 | divcld 11892 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) ∈ ℂ) |
| 34 | 31, 33 | negsubd 11473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2)))) |
| 35 | 29, 14, 3, 6 | div12d 11928 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · (1 / 𝐶)) = (1 · (𝐵 / 𝐶))) |
| 36 | 29, 3, 6 | divcld 11892 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 / 𝐶) ∈ ℂ) |
| 37 | 36 | mullidd 11125 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · (𝐵 / 𝐶)) = (𝐵 / 𝐶)) |
| 38 | 3 | sqvald 14045 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶↑2) = (𝐶 · 𝐶)) |
| 39 | 38 | oveq2d 7357 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) = ((𝐵 · 𝐶) / (𝐶 · 𝐶))) |
| 40 | 29, 3, 3, 6, 6 | divcan5rd 11919 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · 𝐶) / (𝐶 · 𝐶)) = (𝐵 / 𝐶)) |
| 41 | 39, 40 | eqtr2d 2767 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 / 𝐶) = ((𝐵 · 𝐶) / (𝐶↑2))) |
| 42 | 35, 37, 41 | 3eqtrd 2770 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · (1 / 𝐶)) = ((𝐵 · 𝐶) / (𝐶↑2))) |
| 43 | 15 | mullidd 11125 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · 𝐷) = 𝐷) |
| 44 | 43 | oveq1d 7356 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((1 · 𝐷) / (𝐶↑2)) = (𝐷 / (𝐶↑2))) |
| 45 | 44 | negeqd 11349 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → -((1 · 𝐷) / (𝐶↑2)) = -(𝐷 / (𝐶↑2))) |
| 46 | 45 | oveq1d 7356 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = (-(𝐷 / (𝐶↑2)) · 𝐴)) |
| 47 | 15, 17, 22 | divcld 11892 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 / (𝐶↑2)) ∈ ℂ) |
| 48 | 47, 1 | mulneg1d 11565 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (-(𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 / (𝐶↑2)) · 𝐴)) |
| 49 | 15, 1, 17, 22 | div23d 11929 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) = ((𝐷 / (𝐶↑2)) · 𝐴)) |
| 50 | 49 | eqcomd 2737 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐷 / (𝐶↑2)) · 𝐴) = ((𝐷 · 𝐴) / (𝐶↑2))) |
| 51 | 50 | negeqd 11349 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → -((𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2))) |
| 52 | 46, 48, 51 | 3eqtrd 2770 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2))) |
| 53 | 42, 52 | oveq12d 7359 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2)))) |
| 54 | 30, 32, 17, 22 | divsubdird 11931 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2)))) |
| 55 | 34, 53, 54 | 3eqtr4d 2776 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))) |
| 56 | 55 | mpteq2dva 5179 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) |
| 57 | 9, 28, 56 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4571 {cpr 4573 ↦ cmpt 5167 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 − cmin 11339 -cneg 11340 / cdiv 11769 2c2 12175 ↑cexp 13963 D cdv 25786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-icc 13247 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-t1 23224 df-haus 23225 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-limc 25789 df-dv 25790 |
| This theorem is referenced by: dvdivf 45960 dvdivbd 45961 fourierdlem56 46200 fourierdlem57 46201 |
| Copyright terms: Public domain | W3C validator |