Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1541
∈ wcel 2106 (class class class)co 7405
ℂcc 11104 1c1 11107
/ cdiv 11867 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 |
This theorem is referenced by: zq
12934 divlt1lt
13039 divle1le
13040 nnledivrp
13082 modfrac
13845 iexpcyc
14167 geo2sum2
15816 fallfacfac
15985 bpolysum
15993 sin01gt0
16129 bits0
16365 cncongrcoprm
16603 isprm6
16647 divdenle
16681 qden1elz
16689 pczpre
16776 prmreclem2
16846 mul4sq
16883 psgnunilem4
19359 znidomb
21108 iblcnlem1
25296 itgcnlem
25298 iblabsr
25338 iblmulc2
25339 aaliou2b
25845 aaliou3lem3
25848 tayl0
25865 logtayl2
26161 root1cj
26253 elogb
26264 logblog
26286 ang180lem4
26306 isosctrlem3
26314 dquartlem1
26345 efrlim
26463 amgmlem
26483 fsumharmonic
26505 lgamgulmlem5
26526 lgamcvg2
26548 1sgm2ppw
26692 logexprlim
26717 perfectlem2
26722 sum2dchr
26766 dchrvmasum2lem
26988 dchrisum0flblem2
27001 dchrisum0lem1
27008 mulog2sumlem2
27027 selbergb
27041 selberg2b
27044 selberg3lem1
27049 selberg3lem2
27050 pntrmax
27056 pntrlog2bndlem2
27070 pntrlog2bndlem4
27072 pntrlog2bndlem6a
27074 pntrlog2bnd
27076 pntlemk
27098 kbpj
31196 faclimlem1
34701 knoppndvlem17
35392 iblmulc2nc
36541 lcmineqlem11
40892 aks4d1p8
40940 expgrowth
43079 bccn1
43088 binomcxplemnotnn0
43100 ltdivgt1
44052 0ellimcdiv
44351 sinaover2ne0
44570 dvnxpaek
44644 stoweidlem7
44709 stoweidlem36
44738 stoweidlem42
44744 stoweidlem51
44753 stoweidlem59
44761 stirlinglem6
44781 stirlinglem7
44782 stirlinglem10
44785 stirlinglem15
44790 dirkertrigeq
44803 fourierdlem60
44868 fourierdlem61
44869 etransclem14
44950 etransclem24
44960 etransclem25
44961 etransclem35
44971 bits0ALTV
46333 perfectALTVlem2
46376 0dig2nn0e
47251 0dig2nn0o
47252 line2
47391 amgmwlem
47802 |