| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovolm | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set 𝑀 of approximations to the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| Ref | Expression |
|---|---|
| elovolm.1 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| Ref | Expression |
|---|---|
| elovolm | ⊢ (𝐵 ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2739 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 3 | 2 | rexbidv 3164 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 4 | elovolm.1 | . . 3 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
| 5 | 3, 4 | elrab2 3674 | . 2 ⊢ (𝐵 ∈ 𝑀 ↔ (𝐵 ∈ ℝ* ∧ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 6 | elovolmlem 25427 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 7 | eqid 2735 | . . . . . . . . . . 11 ⊢ ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓) | |
| 8 | eqid 2735 | . . . . . . . . . . 11 ⊢ seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓)) | |
| 9 | 7, 8 | ovolsf 25425 | . . . . . . . . . 10 ⊢ (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞)) |
| 10 | 6, 9 | sylbi 217 | . . . . . . . . 9 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞)) |
| 11 | icossxr 13449 | . . . . . . . . 9 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 12 | fss 6722 | . . . . . . . . 9 ⊢ ((seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ*) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ*) | |
| 13 | 10, 11, 12 | sylancl 586 | . . . . . . . 8 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ*) |
| 14 | frn 6713 | . . . . . . . 8 ⊢ (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ* → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*) | |
| 15 | supxrcl 13331 | . . . . . . . 8 ⊢ (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) | |
| 16 | 13, 14, 15 | 3syl 18 | . . . . . . 7 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) |
| 17 | eleq1 2822 | . . . . . . 7 ⊢ (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵 ∈ ℝ* ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)) | |
| 18 | 16, 17 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → 𝐵 ∈ ℝ*)) |
| 19 | 18 | imp 406 | . . . . 5 ⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 𝐵 ∈ ℝ*) |
| 20 | 19 | adantrl 716 | . . . 4 ⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) → 𝐵 ∈ ℝ*) |
| 21 | 20 | rexlimiva 3133 | . . 3 ⊢ (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 𝐵 ∈ ℝ*) |
| 22 | 21 | pm4.71ri 560 | . 2 ⊢ (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝐵 ∈ ℝ* ∧ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 23 | 5, 22 | bitr4i 278 | 1 ⊢ (𝐵 ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 ∩ cin 3925 ⊆ wss 3926 ∪ cuni 4883 × cxp 5652 ran crn 5655 ∘ ccom 5658 ⟶wf 6527 (class class class)co 7405 ↑m cmap 8840 supcsup 9452 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 +∞cpnf 11266 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 − cmin 11466 ℕcn 12240 (,)cioo 13362 [,)cico 13364 seqcseq 14019 abscabs 15253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ico 13368 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 |
| This theorem is referenced by: elovolmr 25429 ovolmge0 25430 ovolicc2 25475 |
| Copyright terms: Public domain | W3C validator |