| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovolm | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set 𝑀 of approximations to the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| Ref | Expression |
|---|---|
| elovolm.1 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| Ref | Expression |
|---|---|
| elovolm | ⊢ (𝐵 ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 3 | 2 | rexbidv 3157 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 4 | elovolm.1 | . . 3 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
| 5 | 3, 4 | elrab2 3659 | . 2 ⊢ (𝐵 ∈ 𝑀 ↔ (𝐵 ∈ ℝ* ∧ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 6 | elovolmlem 25351 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 7 | eqid 2729 | . . . . . . . . . . 11 ⊢ ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓) | |
| 8 | eqid 2729 | . . . . . . . . . . 11 ⊢ seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓)) | |
| 9 | 7, 8 | ovolsf 25349 | . . . . . . . . . 10 ⊢ (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞)) |
| 10 | 6, 9 | sylbi 217 | . . . . . . . . 9 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞)) |
| 11 | icossxr 13369 | . . . . . . . . 9 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 12 | fss 6686 | . . . . . . . . 9 ⊢ ((seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ*) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ*) | |
| 13 | 10, 11, 12 | sylancl 586 | . . . . . . . 8 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ*) |
| 14 | frn 6677 | . . . . . . . 8 ⊢ (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ* → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*) | |
| 15 | supxrcl 13251 | . . . . . . . 8 ⊢ (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) | |
| 16 | 13, 14, 15 | 3syl 18 | . . . . . . 7 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) |
| 17 | eleq1 2816 | . . . . . . 7 ⊢ (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵 ∈ ℝ* ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)) | |
| 18 | 16, 17 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → 𝐵 ∈ ℝ*)) |
| 19 | 18 | imp 406 | . . . . 5 ⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 𝐵 ∈ ℝ*) |
| 20 | 19 | adantrl 716 | . . . 4 ⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) → 𝐵 ∈ ℝ*) |
| 21 | 20 | rexlimiva 3126 | . . 3 ⊢ (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 𝐵 ∈ ℝ*) |
| 22 | 21 | pm4.71ri 560 | . 2 ⊢ (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝐵 ∈ ℝ* ∧ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 23 | 5, 22 | bitr4i 278 | 1 ⊢ (𝐵 ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 ∩ cin 3910 ⊆ wss 3911 ∪ cuni 4867 × cxp 5629 ran crn 5632 ∘ ccom 5635 ⟶wf 6495 (class class class)co 7369 ↑m cmap 8776 supcsup 9367 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 − cmin 11381 ℕcn 12162 (,)cioo 13282 [,)cico 13284 seqcseq 13942 abscabs 15176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ico 13288 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 |
| This theorem is referenced by: elovolmr 25353 ovolmge0 25354 ovolicc2 25399 |
| Copyright terms: Public domain | W3C validator |