MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovolm Structured version   Visualization version   GIF version

Theorem elovolm 23683
Description: Elementhood in the set 𝑀 of approximations to the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
elovolm.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
elovolm (𝐵𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
Distinct variable groups:   𝐵,𝑓,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑓)   𝑀(𝑦,𝑓)

Proof of Theorem elovolm
StepHypRef Expression
1 eqeq1 2782 . . . . 5 (𝑦 = 𝐵 → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
21anbi2d 622 . . . 4 (𝑦 = 𝐵 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
32rexbidv 3237 . . 3 (𝑦 = 𝐵 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
4 elovolm.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
53, 4elrab2 3576 . 2 (𝐵𝑀 ↔ (𝐵 ∈ ℝ* ∧ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
6 elovolmlem 23682 . . . . . . . . . 10 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
7 eqid 2778 . . . . . . . . . . 11 ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓)
8 eqid 2778 . . . . . . . . . . 11 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
97, 8ovolsf 23680 . . . . . . . . . 10 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
106, 9sylbi 209 . . . . . . . . 9 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
11 icossxr 12574 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
12 fss 6306 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ*) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ*)
1310, 11, 12sylancl 580 . . . . . . . 8 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ*)
14 frn 6299 . . . . . . . 8 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ* → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
15 supxrcl 12461 . . . . . . . 8 (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
1613, 14, 153syl 18 . . . . . . 7 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
17 eleq1 2847 . . . . . . 7 (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵 ∈ ℝ* ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*))
1816, 17syl5ibrcom 239 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → 𝐵 ∈ ℝ*))
1918imp 397 . . . . 5 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 𝐵 ∈ ℝ*)
2019adantrl 706 . . . 4 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) → 𝐵 ∈ ℝ*)
2120rexlimiva 3210 . . 3 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 𝐵 ∈ ℝ*)
2221pm4.71ri 556 . 2 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝐵 ∈ ℝ* ∧ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
235, 22bitr4i 270 1 (𝐵𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1601  wcel 2107  wrex 3091  {crab 3094  cin 3791  wss 3792   cuni 4673   × cxp 5355  ran crn 5358  ccom 5361  wf 6133  (class class class)co 6924  𝑚 cmap 8142  supcsup 8636  cr 10273  0cc0 10274  1c1 10275   + caddc 10277  +∞cpnf 10410  *cxr 10412   < clt 10413  cle 10414  cmin 10608  cn 11378  (,)cioo 12491  [,)cico 12493  seqcseq 13123  abscabs 14385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-sup 8638  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-z 11733  df-uz 11997  df-rp 12142  df-ico 12497  df-fz 12648  df-seq 13124  df-exp 13183  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387
This theorem is referenced by:  elovolmr  23684  ovolmge0  23685  ovolicc2  23730
  Copyright terms: Public domain W3C validator