Step | Hyp | Ref
| Expression |
1 | | eqeq1 2736 |
. . . . 5
β’ (π¦ = π΅ β (π¦ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < ) β π΅ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < ))) |
2 | 1 | anbi2d 629 |
. . . 4
β’ (π¦ = π΅ β ((π΄ β βͺ ran
((,) β π) β§ π¦ = sup(ran seq1( + , ((abs
β β ) β π)), β*, < )) β
(π΄ β βͺ ran ((,) β π) β§ π΅ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < )))) |
3 | 2 | rexbidv 3178 |
. . 3
β’ (π¦ = π΅ β (βπ β (( β€ β© (β Γ
β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π¦ = sup(ran seq1( + , ((abs
β β ) β π)), β*, < )) β
βπ β (( β€
β© (β Γ β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π΅ = sup(ran seq1( + , ((abs
β β ) β π)), β*, <
)))) |
4 | | elovolm.1 |
. . 3
β’ π = {π¦ β β* β£
βπ β (( β€
β© (β Γ β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π¦ = sup(ran seq1( + , ((abs
β β ) β π)), β*, <
))} |
5 | 3, 4 | elrab2 3686 |
. 2
β’ (π΅ β π β (π΅ β β* β§
βπ β (( β€
β© (β Γ β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π΅ = sup(ran seq1( + , ((abs
β β ) β π)), β*, <
)))) |
6 | | elovolmlem 25215 |
. . . . . . . . . 10
β’ (π β (( β€ β© (β
Γ β)) βm β) β π:ββΆ( β€ β© (β Γ
β))) |
7 | | eqid 2732 |
. . . . . . . . . . 11
β’ ((abs
β β ) β π) = ((abs β β ) β π) |
8 | | eqid 2732 |
. . . . . . . . . . 11
β’ seq1( + ,
((abs β β ) β π)) = seq1( + , ((abs β β )
β π)) |
9 | 7, 8 | ovolsf 25213 |
. . . . . . . . . 10
β’ (π:ββΆ( β€ β©
(β Γ β)) β seq1( + , ((abs β β ) β
π)):ββΆ(0[,)+β)) |
10 | 6, 9 | sylbi 216 |
. . . . . . . . 9
β’ (π β (( β€ β© (β
Γ β)) βm β) β seq1( + , ((abs β
β ) β π)):ββΆ(0[,)+β)) |
11 | | icossxr 13413 |
. . . . . . . . 9
β’
(0[,)+β) β β* |
12 | | fss 6734 |
. . . . . . . . 9
β’ ((seq1( +
, ((abs β β ) β π)):ββΆ(0[,)+β) β§
(0[,)+β) β β*) β seq1( + , ((abs β
β ) β π)):ββΆβ*) |
13 | 10, 11, 12 | sylancl 586 |
. . . . . . . 8
β’ (π β (( β€ β© (β
Γ β)) βm β) β seq1( + , ((abs β
β ) β π)):ββΆβ*) |
14 | | frn 6724 |
. . . . . . . 8
β’ (seq1( +
, ((abs β β ) β π)):ββΆβ* β
ran seq1( + , ((abs β β ) β π)) β
β*) |
15 | | supxrcl 13298 |
. . . . . . . 8
β’ (ran
seq1( + , ((abs β β ) β π)) β β* β sup(ran
seq1( + , ((abs β β ) β π)), β*, < ) β
β*) |
16 | 13, 14, 15 | 3syl 18 |
. . . . . . 7
β’ (π β (( β€ β© (β
Γ β)) βm β) β sup(ran seq1( + , ((abs
β β ) β π)), β*, < ) β
β*) |
17 | | eleq1 2821 |
. . . . . . 7
β’ (π΅ = sup(ran seq1( + , ((abs
β β ) β π)), β*, < ) β (π΅ β β*
β sup(ran seq1( + , ((abs β β ) β π)), β*, < ) β
β*)) |
18 | 16, 17 | syl5ibrcom 246 |
. . . . . 6
β’ (π β (( β€ β© (β
Γ β)) βm β) β (π΅ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < ) β π΅ β
β*)) |
19 | 18 | imp 407 |
. . . . 5
β’ ((π β (( β€ β© (β
Γ β)) βm β) β§ π΅ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < )) β π΅ β
β*) |
20 | 19 | adantrl 714 |
. . . 4
β’ ((π β (( β€ β© (β
Γ β)) βm β) β§ (π΄ β βͺ ran
((,) β π) β§ π΅ = sup(ran seq1( + , ((abs
β β ) β π)), β*, < ))) β
π΅ β
β*) |
21 | 20 | rexlimiva 3147 |
. . 3
β’
(βπ β ((
β€ β© (β Γ β)) βm β)(π΄ β βͺ ran ((,) β π) β§ π΅ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < )) β π΅ β
β*) |
22 | 21 | pm4.71ri 561 |
. 2
β’
(βπ β ((
β€ β© (β Γ β)) βm β)(π΄ β βͺ ran ((,) β π) β§ π΅ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < )) β (π΅ β β* β§
βπ β (( β€
β© (β Γ β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π΅ = sup(ran seq1( + , ((abs
β β ) β π)), β*, <
)))) |
23 | 5, 22 | bitr4i 277 |
1
β’ (π΅ β π β βπ β (( β€ β© (β Γ
β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π΅ = sup(ran seq1( + , ((abs
β β ) β π)), β*, <
))) |