MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolmge0 Structured version   Visualization version   GIF version

Theorem ovolmge0 24841
Description: The set 𝑀 is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
elovolm.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolmge0 (𝐵𝑀 → 0 ≤ 𝐵)
Distinct variable groups:   𝐵,𝑓,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑓)   𝑀(𝑦,𝑓)

Proof of Theorem ovolmge0
StepHypRef Expression
1 elovolm.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 24839 . 2 (𝐵𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 elovolmlem 24838 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 eqid 2736 . . . . . . . . . 10 ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓)
5 eqid 2736 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
64, 5ovolsf 24836 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
7 1nn 12164 . . . . . . . . 9 1 ∈ ℕ
8 ffvelcdm 7032 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
96, 7, 8sylancl 586 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
10 elrege0 13371 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) ↔ ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ ∧ 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1)))
1110simprbi 497 . . . . . . . 8 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
129, 11syl 17 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
136frnd 6676 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞))
14 icossxr 13349 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
1513, 14sstrdi 3956 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
166ffnd 6669 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ)
17 fnfvelrn 7031 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
1816, 7, 17sylancl 586 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
19 supxrub 13243 . . . . . . . 8 ((ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
2015, 18, 19syl2anc 584 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
21 0xr 11202 . . . . . . . 8 0 ∈ ℝ*
2214, 9sselid 3942 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ*)
23 supxrcl 13234 . . . . . . . . 9 (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2415, 23syl 17 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
25 xrletr 13077 . . . . . . . 8 ((0 ∈ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ* ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2621, 22, 24, 25mp3an2i 1466 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2712, 20, 26mp2and 697 . . . . . 6 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
283, 27sylbi 216 . . . . 5 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
29 breq2 5109 . . . . 5 (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (0 ≤ 𝐵 ↔ 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3028, 29syl5ibrcom 246 . . . 4 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → 0 ≤ 𝐵))
3130adantld 491 . . 3 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵))
3231rexlimiv 3145 . 2 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵)
332, 32sylbi 216 1 (𝐵𝑀 → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  cin 3909  wss 3910   cuni 4865   class class class wbr 5105   × cxp 5631  ran crn 5634  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  supcsup 9376  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385  cn 12153  (,)cioo 13264  [,)cico 13266  seqcseq 13906  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  ovolge0  24845
  Copyright terms: Public domain W3C validator