MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolmge0 Structured version   Visualization version   GIF version

Theorem ovolmge0 24641
Description: The set 𝑀 is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
elovolm.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolmge0 (𝐵𝑀 → 0 ≤ 𝐵)
Distinct variable groups:   𝐵,𝑓,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑓)   𝑀(𝑦,𝑓)

Proof of Theorem ovolmge0
StepHypRef Expression
1 elovolm.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 24639 . 2 (𝐵𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 elovolmlem 24638 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 eqid 2738 . . . . . . . . . 10 ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓)
5 eqid 2738 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
64, 5ovolsf 24636 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
7 1nn 11984 . . . . . . . . 9 1 ∈ ℕ
8 ffvelrn 6959 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
96, 7, 8sylancl 586 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
10 elrege0 13186 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) ↔ ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ ∧ 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1)))
1110simprbi 497 . . . . . . . 8 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
129, 11syl 17 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
136frnd 6608 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞))
14 icossxr 13164 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
1513, 14sstrdi 3933 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
166ffnd 6601 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ)
17 fnfvelrn 6958 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
1816, 7, 17sylancl 586 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
19 supxrub 13058 . . . . . . . 8 ((ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
2015, 18, 19syl2anc 584 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
21 0xr 11022 . . . . . . . 8 0 ∈ ℝ*
2214, 9sselid 3919 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ*)
23 supxrcl 13049 . . . . . . . . 9 (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2415, 23syl 17 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
25 xrletr 12892 . . . . . . . 8 ((0 ∈ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ* ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2621, 22, 24, 25mp3an2i 1465 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2712, 20, 26mp2and 696 . . . . . 6 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
283, 27sylbi 216 . . . . 5 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
29 breq2 5078 . . . . 5 (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (0 ≤ 𝐵 ↔ 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3028, 29syl5ibrcom 246 . . . 4 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → 0 ≤ 𝐵))
3130adantld 491 . . 3 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵))
3231rexlimiv 3209 . 2 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵)
332, 32sylbi 216 1 (𝐵𝑀 → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  cin 3886  wss 3887   cuni 4839   class class class wbr 5074   × cxp 5587  ran crn 5590  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  supcsup 9199  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cmin 11205  cn 11973  (,)cioo 13079  [,)cico 13081  seqcseq 13721  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  ovolge0  24645
  Copyright terms: Public domain W3C validator