Proof of Theorem ovolmge0
Step | Hyp | Ref
| Expression |
1 | | elovolm.1 |
. . 3
⊢ 𝑀 = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
))} |
2 | 1 | elovolm 24544 |
. 2
⊢ (𝐵 ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
))) |
3 | | elovolmlem 24543 |
. . . . . 6
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
4 | | eqid 2738 |
. . . . . . . . . 10
⊢ ((abs
∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓) |
5 | | eqid 2738 |
. . . . . . . . . 10
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
6 | 4, 5 | ovolsf 24541 |
. . . . . . . . 9
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝑓)):ℕ⟶(0[,)+∞)) |
7 | | 1nn 11914 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
8 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) ∧ 1
∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈
(0[,)+∞)) |
9 | 6, 7, 8 | sylancl 585 |
. . . . . . . 8
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘
𝑓))‘1) ∈
(0[,)+∞)) |
10 | | elrege0 13115 |
. . . . . . . . 9
⊢ ((seq1( +
, ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) ↔
((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ ∧ 0 ≤
(seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))) |
11 | 10 | simprbi 496 |
. . . . . . . 8
⊢ ((seq1( +
, ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) → 0
≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1)) |
12 | 9, 11 | syl 17 |
. . . . . . 7
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 0 ≤ (seq1( + , ((abs ∘ − )
∘ 𝑓))‘1)) |
13 | 6 | frnd 6592 |
. . . . . . . . 9
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘
𝑓)) ⊆
(0[,)+∞)) |
14 | | icossxr 13093 |
. . . . . . . . 9
⊢
(0[,)+∞) ⊆ ℝ* |
15 | 13, 14 | sstrdi 3929 |
. . . . . . . 8
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘
𝑓)) ⊆
ℝ*) |
16 | 6 | ffnd 6585 |
. . . . . . . . 9
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝑓)) Fn
ℕ) |
17 | | fnfvelrn 6940 |
. . . . . . . . 9
⊢ ((seq1( +
, ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ∧ 1 ∈ ℕ) →
(seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs
∘ − ) ∘ 𝑓))) |
18 | 16, 7, 17 | sylancl 585 |
. . . . . . . 8
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘
𝑓))‘1) ∈ ran
seq1( + , ((abs ∘ − ) ∘ 𝑓))) |
19 | | supxrub 12987 |
. . . . . . . 8
⊢ ((ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* ∧ (seq1( +
, ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs
∘ − ) ∘ 𝑓))) → (seq1( + , ((abs ∘ − )
∘ 𝑓))‘1) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
20 | 15, 18, 19 | syl2anc 583 |
. . . . . . 7
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘
𝑓))‘1) ≤ sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
21 | | 0xr 10953 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
22 | 14, 9 | sselid 3915 |
. . . . . . . 8
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘
𝑓))‘1) ∈
ℝ*) |
23 | | supxrcl 12978 |
. . . . . . . . 9
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ*) |
24 | 15, 23 | syl 17 |
. . . . . . . 8
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ∈ ℝ*) |
25 | | xrletr 12821 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘
𝑓))‘1) ∈
ℝ* ∧ sup(ran seq1( + , ((abs ∘ − ) ∘
𝑓)), ℝ*,
< ) ∈ ℝ*) → ((0 ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) → 0
≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
))) |
26 | 21, 22, 24, 25 | mp3an2i 1464 |
. . . . . . 7
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((0 ≤ (seq1( + , ((abs ∘ − )
∘ 𝑓))‘1) ∧
(seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) → 0
≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
))) |
27 | 12, 20, 26 | mp2and 695 |
. . . . . 6
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 0 ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
28 | 3, 27 | sylbi 216 |
. . . . 5
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 0 ≤ sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
29 | | breq2 5074 |
. . . . 5
⊢ (𝐵 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ) → (0
≤ 𝐵 ↔ 0 ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
))) |
30 | 28, 29 | syl5ibrcom 246 |
. . . 4
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (𝐵 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) → 0 ≤ 𝐵)) |
31 | 30 | adantld 490 |
. . 3
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) → 0
≤ 𝐵)) |
32 | 31 | rexlimiv 3208 |
. 2
⊢
(∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → 0 ≤ 𝐵) |
33 | 2, 32 | sylbi 216 |
1
⊢ (𝐵 ∈ 𝑀 → 0 ≤ 𝐵) |