MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolmge0 Structured version   Visualization version   GIF version

Theorem ovolmge0 25531
Description: The set 𝑀 is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
elovolm.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolmge0 (𝐵𝑀 → 0 ≤ 𝐵)
Distinct variable groups:   𝐵,𝑓,𝑦   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑓)   𝑀(𝑦,𝑓)

Proof of Theorem ovolmge0
StepHypRef Expression
1 elovolm.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 25529 . 2 (𝐵𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 elovolmlem 25528 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 eqid 2740 . . . . . . . . . 10 ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓)
5 eqid 2740 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
64, 5ovolsf 25526 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
7 1nn 12304 . . . . . . . . 9 1 ∈ ℕ
8 ffvelcdm 7115 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
96, 7, 8sylancl 585 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
10 elrege0 13514 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) ↔ ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ ∧ 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1)))
1110simprbi 496 . . . . . . . 8 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
129, 11syl 17 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
136frnd 6755 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞))
14 icossxr 13492 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
1513, 14sstrdi 4021 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
166ffnd 6748 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ)
17 fnfvelrn 7114 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
1816, 7, 17sylancl 585 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
19 supxrub 13386 . . . . . . . 8 ((ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
2015, 18, 19syl2anc 583 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
21 0xr 11337 . . . . . . . 8 0 ∈ ℝ*
2214, 9sselid 4006 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ*)
23 supxrcl 13377 . . . . . . . . 9 (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2415, 23syl 17 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
25 xrletr 13220 . . . . . . . 8 ((0 ∈ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ* ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2621, 22, 24, 25mp3an2i 1466 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2712, 20, 26mp2and 698 . . . . . 6 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
283, 27sylbi 217 . . . . 5 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
29 breq2 5170 . . . . 5 (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (0 ≤ 𝐵 ↔ 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3028, 29syl5ibrcom 247 . . . 4 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → 0 ≤ 𝐵))
3130adantld 490 . . 3 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵))
3231rexlimiv 3154 . 2 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵)
332, 32sylbi 217 1 (𝐵𝑀 → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  cin 3975  wss 3976   cuni 4931   class class class wbr 5166   × cxp 5698  ran crn 5701  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  supcsup 9509  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  (,)cioo 13407  [,)cico 13409  seqcseq 14052  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  ovolge0  25535
  Copyright terms: Public domain W3C validator