MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcyg Structured version   Visualization version   GIF version

Theorem cycsubgcyg 19417
Description: The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cycsubgcyg.x 𝑋 = (Base‘𝐺)
cycsubgcyg.t · = (.g𝐺)
cycsubgcyg.s 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
cycsubgcyg ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem cycsubgcyg
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2738 . 2 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
3 cycsubgcyg.s . . . 4 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
4 cycsubgcyg.x . . . . . 6 𝑋 = (Base‘𝐺)
5 cycsubgcyg.t . . . . . 6 · = (.g𝐺)
6 eqid 2738 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
74, 5, 6cycsubgcl 18740 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))))
87simpld 494 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺))
93, 8eqeltrid 2843 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
10 eqid 2738 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
1110subggrp 18673 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
129, 11syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ Grp)
137simprd 495 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
1413, 3eleqtrrdi 2850 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴𝑆)
1510subgbas 18674 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
169, 15syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 = (Base‘(𝐺s 𝑆)))
1714, 16eleqtrd 2841 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ (Base‘(𝐺s 𝑆)))
1816eleq2d 2824 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑦𝑆𝑦 ∈ (Base‘(𝐺s 𝑆))))
1918biimpar 477 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → 𝑦𝑆)
20 simpr 484 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦𝑆)
2120, 3eleqtrdi 2849 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
22 oveq1 7262 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴))
2322cbvmptv 5183 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
24 ovex 7288 . . . . . 6 (𝑛 · 𝐴) ∈ V
2523, 24elrnmpti 5858 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
2621, 25sylib 217 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
279ad2antrr 722 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑆 ∈ (SubGrp‘𝐺))
28 simpr 484 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
2914ad2antrr 722 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝐴𝑆)
305, 10, 2subgmulg 18684 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑆) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3127, 28, 29, 30syl3anc 1369 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3231eqeq2d 2749 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑦 = (𝑛 · 𝐴) ↔ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3332rexbidva 3224 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3426, 33mpbid 231 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3519, 34syldan 590 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
361, 2, 12, 17, 35iscygd 19402 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  cz 12249  Basecbs 16840  s cress 16867  Grpcgrp 18492  .gcmg 18615  SubGrpcsubg 18664  CycGrpccyg 19392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-cyg 19393
This theorem is referenced by:  cycsubgcyg2  19418
  Copyright terms: Public domain W3C validator