Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cycsubgcyg | Structured version Visualization version GIF version |
Description: The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cycsubgcyg.x | ⊢ 𝑋 = (Base‘𝐺) |
cycsubgcyg.t | ⊢ · = (.g‘𝐺) |
cycsubgcyg.s | ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
Ref | Expression |
---|---|
cycsubgcyg | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
2 | eqid 2737 | . 2 ⊢ (.g‘(𝐺 ↾s 𝑆)) = (.g‘(𝐺 ↾s 𝑆)) | |
3 | cycsubgcyg.s | . . . 4 ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
4 | cycsubgcyg.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
5 | cycsubgcyg.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
6 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
7 | 4, 5, 6 | cycsubgcl 18901 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))) |
8 | 7 | simpld 495 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺)) |
9 | 3, 8 | eqeltrid 2842 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (SubGrp‘𝐺)) |
10 | eqid 2737 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
11 | 10 | subggrp 18834 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
12 | 9, 11 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ Grp) |
13 | 7 | simprd 496 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
14 | 13, 3 | eleqtrrdi 2849 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
15 | 10 | subgbas 18835 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
16 | 9, 15 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
17 | 14, 16 | eleqtrd 2840 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (Base‘(𝐺 ↾s 𝑆))) |
18 | 16 | eleq2d 2823 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆)))) |
19 | 18 | biimpar 478 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆))) → 𝑦 ∈ 𝑆) |
20 | simpr 485 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
21 | 20, 3 | eleqtrdi 2848 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
22 | oveq1 7324 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴)) | |
23 | 22 | cbvmptv 5200 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) |
24 | ovex 7350 | . . . . . 6 ⊢ (𝑛 · 𝐴) ∈ V | |
25 | 23, 24 | elrnmpti 5889 | . . . . 5 ⊢ (𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴)) |
26 | 21, 25 | sylib 217 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴)) |
27 | 9 | ad2antrr 723 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝑆 ∈ (SubGrp‘𝐺)) |
28 | simpr 485 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
29 | 14 | ad2antrr 723 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ 𝑆) |
30 | 5, 10, 2 | subgmulg 18845 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
31 | 27, 28, 29, 30 | syl3anc 1370 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
32 | 31 | eqeq2d 2748 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → (𝑦 = (𝑛 · 𝐴) ↔ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴))) |
33 | 32 | rexbidva 3170 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴))) |
34 | 26, 33 | mpbid 231 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
35 | 19, 34 | syldan 591 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆))) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
36 | 1, 2, 12, 17, 35 | iscygd 19562 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 ↦ cmpt 5170 ran crn 5609 ‘cfv 6466 (class class class)co 7317 ℤcz 12399 Basecbs 16989 ↾s cress 17018 Grpcgrp 18653 .gcmg 18776 SubGrpcsubg 18825 CycGrpccyg 19552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-seq 13802 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-0g 17229 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-grp 18656 df-minusg 18657 df-mulg 18777 df-subg 18828 df-cyg 19553 |
This theorem is referenced by: cycsubgcyg2 19578 |
Copyright terms: Public domain | W3C validator |