MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcyg Structured version   Visualization version   GIF version

Theorem cycsubgcyg 19920
Description: The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cycsubgcyg.x 𝑋 = (Base‘𝐺)
cycsubgcyg.t · = (.g𝐺)
cycsubgcyg.s 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
cycsubgcyg ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem cycsubgcyg
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2736 . 2 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
3 cycsubgcyg.s . . . 4 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
4 cycsubgcyg.x . . . . . 6 𝑋 = (Base‘𝐺)
5 cycsubgcyg.t . . . . . 6 · = (.g𝐺)
6 eqid 2736 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
74, 5, 6cycsubgcl 19225 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))))
87simpld 494 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺))
93, 8eqeltrid 2844 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
10 eqid 2736 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
1110subggrp 19148 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
129, 11syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ Grp)
137simprd 495 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
1413, 3eleqtrrdi 2851 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴𝑆)
1510subgbas 19149 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
169, 15syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 = (Base‘(𝐺s 𝑆)))
1714, 16eleqtrd 2842 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ (Base‘(𝐺s 𝑆)))
1816eleq2d 2826 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑦𝑆𝑦 ∈ (Base‘(𝐺s 𝑆))))
1918biimpar 477 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → 𝑦𝑆)
20 simpr 484 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦𝑆)
2120, 3eleqtrdi 2850 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
22 oveq1 7439 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴))
2322cbvmptv 5254 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
24 ovex 7465 . . . . . 6 (𝑛 · 𝐴) ∈ V
2523, 24elrnmpti 5972 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
2621, 25sylib 218 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
279ad2antrr 726 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑆 ∈ (SubGrp‘𝐺))
28 simpr 484 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
2914ad2antrr 726 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝐴𝑆)
305, 10, 2subgmulg 19159 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑆) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3127, 28, 29, 30syl3anc 1372 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3231eqeq2d 2747 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑦 = (𝑛 · 𝐴) ↔ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3332rexbidva 3176 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3426, 33mpbid 232 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3519, 34syldan 591 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
361, 2, 12, 17, 35iscygd 19906 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3069  cmpt 5224  ran crn 5685  cfv 6560  (class class class)co 7432  cz 12615  Basecbs 17248  s cress 17275  Grpcgrp 18952  .gcmg 19086  SubGrpcsubg 19139  CycGrpccyg 19896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-seq 14044  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-mulg 19087  df-subg 19142  df-cyg 19897
This theorem is referenced by:  cycsubgcyg2  19921
  Copyright terms: Public domain W3C validator