![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cycsubgcyg | Structured version Visualization version GIF version |
Description: The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cycsubgcyg.x | ⊢ 𝑋 = (Base‘𝐺) |
cycsubgcyg.t | ⊢ · = (.g‘𝐺) |
cycsubgcyg.s | ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
Ref | Expression |
---|---|
cycsubgcyg | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
2 | eqid 2740 | . 2 ⊢ (.g‘(𝐺 ↾s 𝑆)) = (.g‘(𝐺 ↾s 𝑆)) | |
3 | cycsubgcyg.s | . . . 4 ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
4 | cycsubgcyg.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
5 | cycsubgcyg.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
6 | eqid 2740 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
7 | 4, 5, 6 | cycsubgcl 19246 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))) |
8 | 7 | simpld 494 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺)) |
9 | 3, 8 | eqeltrid 2848 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (SubGrp‘𝐺)) |
10 | eqid 2740 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
11 | 10 | subggrp 19169 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
12 | 9, 11 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ Grp) |
13 | 7 | simprd 495 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
14 | 13, 3 | eleqtrrdi 2855 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
15 | 10 | subgbas 19170 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
16 | 9, 15 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
17 | 14, 16 | eleqtrd 2846 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (Base‘(𝐺 ↾s 𝑆))) |
18 | 16 | eleq2d 2830 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆)))) |
19 | 18 | biimpar 477 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆))) → 𝑦 ∈ 𝑆) |
20 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
21 | 20, 3 | eleqtrdi 2854 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
22 | oveq1 7455 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴)) | |
23 | 22 | cbvmptv 5279 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) |
24 | ovex 7481 | . . . . . 6 ⊢ (𝑛 · 𝐴) ∈ V | |
25 | 23, 24 | elrnmpti 5985 | . . . . 5 ⊢ (𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴)) |
26 | 21, 25 | sylib 218 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴)) |
27 | 9 | ad2antrr 725 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝑆 ∈ (SubGrp‘𝐺)) |
28 | simpr 484 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
29 | 14 | ad2antrr 725 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ 𝑆) |
30 | 5, 10, 2 | subgmulg 19180 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
31 | 27, 28, 29, 30 | syl3anc 1371 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
32 | 31 | eqeq2d 2751 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → (𝑦 = (𝑛 · 𝐴) ↔ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴))) |
33 | 32 | rexbidva 3183 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴))) |
34 | 26, 33 | mpbid 232 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
35 | 19, 34 | syldan 590 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆))) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
36 | 1, 2, 12, 17, 35 | iscygd 19929 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ↦ cmpt 5249 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℤcz 12639 Basecbs 17258 ↾s cress 17287 Grpcgrp 18973 .gcmg 19107 SubGrpcsubg 19160 CycGrpccyg 19919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-seq 14053 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-cyg 19920 |
This theorem is referenced by: cycsubgcyg2 19944 |
Copyright terms: Public domain | W3C validator |