MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcyg Structured version   Visualization version   GIF version

Theorem cycsubgcyg 19837
Description: The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cycsubgcyg.x 𝑋 = (Base‘𝐺)
cycsubgcyg.t · = (.g𝐺)
cycsubgcyg.s 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
cycsubgcyg ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem cycsubgcyg
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2730 . 2 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
3 cycsubgcyg.s . . . 4 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
4 cycsubgcyg.x . . . . . 6 𝑋 = (Base‘𝐺)
5 cycsubgcyg.t . . . . . 6 · = (.g𝐺)
6 eqid 2730 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
74, 5, 6cycsubgcl 19144 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))))
87simpld 494 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺))
93, 8eqeltrid 2833 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
10 eqid 2730 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
1110subggrp 19067 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
129, 11syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ Grp)
137simprd 495 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
1413, 3eleqtrrdi 2840 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴𝑆)
1510subgbas 19068 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
169, 15syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 = (Base‘(𝐺s 𝑆)))
1714, 16eleqtrd 2831 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ (Base‘(𝐺s 𝑆)))
1816eleq2d 2815 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑦𝑆𝑦 ∈ (Base‘(𝐺s 𝑆))))
1918biimpar 477 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → 𝑦𝑆)
20 simpr 484 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦𝑆)
2120, 3eleqtrdi 2839 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
22 oveq1 7401 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴))
2322cbvmptv 5219 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
24 ovex 7427 . . . . . 6 (𝑛 · 𝐴) ∈ V
2523, 24elrnmpti 5934 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
2621, 25sylib 218 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
279ad2antrr 726 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑆 ∈ (SubGrp‘𝐺))
28 simpr 484 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
2914ad2antrr 726 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝐴𝑆)
305, 10, 2subgmulg 19078 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑆) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3127, 28, 29, 30syl3anc 1373 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3231eqeq2d 2741 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑦 = (𝑛 · 𝐴) ↔ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3332rexbidva 3157 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3426, 33mpbid 232 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3519, 34syldan 591 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
361, 2, 12, 17, 35iscygd 19823 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3055  cmpt 5196  ran crn 5647  cfv 6519  (class class class)co 7394  cz 12545  Basecbs 17185  s cress 17206  Grpcgrp 18871  .gcmg 19005  SubGrpcsubg 19058  CycGrpccyg 19813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-n0 12459  df-z 12546  df-uz 12810  df-fz 13482  df-seq 13977  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-mulg 19006  df-subg 19061  df-cyg 19814
This theorem is referenced by:  cycsubgcyg2  19838
  Copyright terms: Public domain W3C validator