Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cycsubgcyg | Structured version Visualization version GIF version |
Description: The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cycsubgcyg.x | ⊢ 𝑋 = (Base‘𝐺) |
cycsubgcyg.t | ⊢ · = (.g‘𝐺) |
cycsubgcyg.s | ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
Ref | Expression |
---|---|
cycsubgcyg | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
2 | eqid 2737 | . 2 ⊢ (.g‘(𝐺 ↾s 𝑆)) = (.g‘(𝐺 ↾s 𝑆)) | |
3 | cycsubgcyg.s | . . . 4 ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
4 | cycsubgcyg.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
5 | cycsubgcyg.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
6 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
7 | 4, 5, 6 | cycsubgcl 18613 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))) |
8 | 7 | simpld 498 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺)) |
9 | 3, 8 | eqeltrid 2842 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (SubGrp‘𝐺)) |
10 | eqid 2737 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
11 | 10 | subggrp 18546 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
12 | 9, 11 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ Grp) |
13 | 7 | simprd 499 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
14 | 13, 3 | eleqtrrdi 2849 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
15 | 10 | subgbas 18547 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
16 | 9, 15 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
17 | 14, 16 | eleqtrd 2840 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (Base‘(𝐺 ↾s 𝑆))) |
18 | 16 | eleq2d 2823 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆)))) |
19 | 18 | biimpar 481 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆))) → 𝑦 ∈ 𝑆) |
20 | simpr 488 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
21 | 20, 3 | eleqtrdi 2848 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
22 | oveq1 7220 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴)) | |
23 | 22 | cbvmptv 5158 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) |
24 | ovex 7246 | . . . . . 6 ⊢ (𝑛 · 𝐴) ∈ V | |
25 | 23, 24 | elrnmpti 5829 | . . . . 5 ⊢ (𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴)) |
26 | 21, 25 | sylib 221 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴)) |
27 | 9 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝑆 ∈ (SubGrp‘𝐺)) |
28 | simpr 488 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
29 | 14 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ 𝑆) |
30 | 5, 10, 2 | subgmulg 18557 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
31 | 27, 28, 29, 30 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
32 | 31 | eqeq2d 2748 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → (𝑦 = (𝑛 · 𝐴) ↔ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴))) |
33 | 32 | rexbidva 3215 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴))) |
34 | 26, 33 | mpbid 235 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
35 | 19, 34 | syldan 594 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆))) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
36 | 1, 2, 12, 17, 35 | iscygd 19271 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ↦ cmpt 5135 ran crn 5552 ‘cfv 6380 (class class class)co 7213 ℤcz 12176 Basecbs 16760 ↾s cress 16784 Grpcgrp 18365 .gcmg 18488 SubGrpcsubg 18537 CycGrpccyg 19261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-seq 13575 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-mulg 18489 df-subg 18540 df-cyg 19262 |
This theorem is referenced by: cycsubgcyg2 19287 |
Copyright terms: Public domain | W3C validator |