| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubgcyg | Structured version Visualization version GIF version | ||
| Description: The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| cycsubgcyg.x | ⊢ 𝑋 = (Base‘𝐺) |
| cycsubgcyg.t | ⊢ · = (.g‘𝐺) |
| cycsubgcyg.s | ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
| Ref | Expression |
|---|---|
| cycsubgcyg | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 2 | eqid 2730 | . 2 ⊢ (.g‘(𝐺 ↾s 𝑆)) = (.g‘(𝐺 ↾s 𝑆)) | |
| 3 | cycsubgcyg.s | . . . 4 ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
| 4 | cycsubgcyg.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | cycsubgcyg.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
| 7 | 4, 5, 6 | cycsubgcl 19111 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))) |
| 8 | 7 | simpld 494 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺)) |
| 9 | 3, 8 | eqeltrid 2833 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 10 | eqid 2730 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 11 | 10 | subggrp 19034 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 12 | 9, 11 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 13 | 7 | simprd 495 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
| 14 | 13, 3 | eleqtrrdi 2840 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| 15 | 10 | subgbas 19035 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 16 | 9, 15 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 17 | 14, 16 | eleqtrd 2831 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 18 | 16 | eleq2d 2815 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆)))) |
| 19 | 18 | biimpar 477 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆))) → 𝑦 ∈ 𝑆) |
| 20 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 21 | 20, 3 | eleqtrdi 2839 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
| 22 | oveq1 7348 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴)) | |
| 23 | 22 | cbvmptv 5193 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) |
| 24 | ovex 7374 | . . . . . 6 ⊢ (𝑛 · 𝐴) ∈ V | |
| 25 | 23, 24 | elrnmpti 5899 | . . . . 5 ⊢ (𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴)) |
| 26 | 21, 25 | sylib 218 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴)) |
| 27 | 9 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 28 | simpr 484 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
| 29 | 14 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ 𝑆) |
| 30 | 5, 10, 2 | subgmulg 19045 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
| 31 | 27, 28, 29, 30 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
| 32 | 31 | eqeq2d 2741 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) → (𝑦 = (𝑛 · 𝐴) ↔ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴))) |
| 33 | 32 | rexbidva 3152 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴))) |
| 34 | 26, 33 | mpbid 232 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
| 35 | 19, 34 | syldan 591 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝑆))) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺 ↾s 𝑆))𝐴)) |
| 36 | 1, 2, 12, 17, 35 | iscygd 19792 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 ↦ cmpt 5170 ran crn 5615 ‘cfv 6477 (class class class)co 7341 ℤcz 12460 Basecbs 17112 ↾s cress 17133 Grpcgrp 18838 .gcmg 18972 SubGrpcsubg 19025 CycGrpccyg 19782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-seq 13901 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-mulg 18973 df-subg 19028 df-cyg 19783 |
| This theorem is referenced by: cycsubgcyg2 19807 |
| Copyright terms: Public domain | W3C validator |