Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxbasefi Structured version   Visualization version   GIF version

Theorem rrxbasefi 24017
 Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑m 𝑋) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrxbasefi.x (𝜑𝑋 ∈ Fin)
rrxbasefi.h 𝐻 = (ℝ^‘𝑋)
rrxbasefi.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxbasefi (𝜑𝐵 = (ℝ ↑m 𝑋))

Proof of Theorem rrxbasefi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rrxbasefi.x . . . 4 (𝜑𝑋 ∈ Fin)
2 rrxbasefi.h . . . . 5 𝐻 = (ℝ^‘𝑋)
3 rrxbasefi.b . . . . 5 𝐵 = (Base‘𝐻)
42, 3rrxbase 23995 . . . 4 (𝑋 ∈ Fin → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
51, 4syl 17 . . 3 (𝜑𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
6 ssrab2 4042 . . 3 {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑m 𝑋)
75, 6eqsstrdi 4007 . 2 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
8 simpr 488 . . . 4 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ (ℝ ↑m 𝑋))
9 elmapi 8424 . . . . . 6 (𝑓 ∈ (ℝ ↑m 𝑋) → 𝑓:𝑋⟶ℝ)
109adantl 485 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℝ)
111adantr 484 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
12 c0ex 10633 . . . . . 6 0 ∈ V
1312a1i 11 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 0 ∈ V)
1410, 11, 13fdmfifsupp 8840 . . . 4 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 finSupp 0)
15 rabid 3369 . . . 4 (𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ↔ (𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑓 finSupp 0))
168, 14, 15sylanbrc 586 . . 3 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
175eqcomd 2830 . . . 4 (𝜑 → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵)
1817adantr 484 . . 3 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵)
1916, 18eleqtrd 2918 . 2 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓𝐵)
207, 19eqelssd 3974 1 (𝜑𝐵 = (ℝ ↑m 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {crab 3137  Vcvv 3480   class class class wbr 5052  ⟶wf 6339  ‘cfv 6343  (class class class)co 7149   ↑m cmap 8402  Fincfn 8505   finSupp cfsupp 8830  ℝcr 10534  0cc0 10535  Basecbs 16483  ℝ^crrx 23990 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-sup 8903  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-rp 12387  df-fz 12895  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19504  df-field 19505  df-subrg 19533  df-sra 19944  df-rgmod 19945  df-cnfld 20546  df-refld 20749  df-dsmm 20876  df-frlm 20891  df-tng 23194  df-tcph 23777  df-rrx 23992 This theorem is referenced by:  rrxdsfi  24018  rrxmetfi  24019  rrxtopnfi  42855  rrxtoponfi  42859  qndenserrnopnlem  42865  qndenserrn  42867  rrnprjdstle  42869  rrxlines  45073  rrxlinesc  45075  rrxlinec  45076  rrxsphere  45088
 Copyright terms: Public domain W3C validator