MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxbasefi Structured version   Visualization version   GIF version

Theorem rrxbasefi 25463
Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑m 𝑋) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrxbasefi.x (𝜑𝑋 ∈ Fin)
rrxbasefi.h 𝐻 = (ℝ^‘𝑋)
rrxbasefi.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxbasefi (𝜑𝐵 = (ℝ ↑m 𝑋))

Proof of Theorem rrxbasefi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rrxbasefi.x . . . 4 (𝜑𝑋 ∈ Fin)
2 rrxbasefi.h . . . . 5 𝐻 = (ℝ^‘𝑋)
3 rrxbasefi.b . . . . 5 𝐵 = (Base‘𝐻)
42, 3rrxbase 25441 . . . 4 (𝑋 ∈ Fin → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
51, 4syl 17 . . 3 (𝜑𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
6 ssrab2 4103 . . 3 {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑m 𝑋)
75, 6eqsstrdi 4063 . 2 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
8 simpr 484 . . . 4 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ (ℝ ↑m 𝑋))
9 elmapi 8907 . . . . . 6 (𝑓 ∈ (ℝ ↑m 𝑋) → 𝑓:𝑋⟶ℝ)
109adantl 481 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℝ)
111adantr 480 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
12 c0ex 11284 . . . . . 6 0 ∈ V
1312a1i 11 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 0 ∈ V)
1410, 11, 13fdmfifsupp 9444 . . . 4 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 finSupp 0)
15 rabid 3465 . . . 4 (𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ↔ (𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑓 finSupp 0))
168, 14, 15sylanbrc 582 . . 3 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
175eqcomd 2746 . . . 4 (𝜑 → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵)
1817adantr 480 . . 3 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵)
1916, 18eleqtrd 2846 . 2 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓𝐵)
207, 19eqelssd 4030 1 (𝜑𝐵 = (ℝ ↑m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  cr 11183  0cc0 11184  Basecbs 17258  ℝ^crrx 25436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-tng 24618  df-tcph 25222  df-rrx 25438
This theorem is referenced by:  rrxdsfi  25464  rrxmetfi  25465  rrxtopnfi  46208  rrxtoponfi  46212  qndenserrnopnlem  46218  qndenserrn  46220  rrnprjdstle  46222  rrxlines  48467  rrxlinesc  48469  rrxlinec  48470  rrxsphere  48482
  Copyright terms: Public domain W3C validator