MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxbasefi Structured version   Visualization version   GIF version

Theorem rrxbasefi 25458
Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑m 𝑋) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrxbasefi.x (𝜑𝑋 ∈ Fin)
rrxbasefi.h 𝐻 = (ℝ^‘𝑋)
rrxbasefi.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxbasefi (𝜑𝐵 = (ℝ ↑m 𝑋))

Proof of Theorem rrxbasefi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rrxbasefi.x . . . 4 (𝜑𝑋 ∈ Fin)
2 rrxbasefi.h . . . . 5 𝐻 = (ℝ^‘𝑋)
3 rrxbasefi.b . . . . 5 𝐵 = (Base‘𝐻)
42, 3rrxbase 25436 . . . 4 (𝑋 ∈ Fin → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
51, 4syl 17 . . 3 (𝜑𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
6 ssrab2 4090 . . 3 {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑m 𝑋)
75, 6eqsstrdi 4050 . 2 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
8 simpr 484 . . . 4 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ (ℝ ↑m 𝑋))
9 elmapi 8888 . . . . . 6 (𝑓 ∈ (ℝ ↑m 𝑋) → 𝑓:𝑋⟶ℝ)
109adantl 481 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℝ)
111adantr 480 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
12 c0ex 11253 . . . . . 6 0 ∈ V
1312a1i 11 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 0 ∈ V)
1410, 11, 13fdmfifsupp 9413 . . . 4 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 finSupp 0)
15 rabid 3455 . . . 4 (𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ↔ (𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑓 finSupp 0))
168, 14, 15sylanbrc 583 . . 3 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
175eqcomd 2741 . . . 4 (𝜑 → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵)
1817adantr 480 . . 3 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵)
1916, 18eleqtrd 2841 . 2 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓𝐵)
207, 19eqelssd 4017 1 (𝜑𝐵 = (ℝ ↑m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984   finSupp cfsupp 9399  cr 11152  0cc0 11153  Basecbs 17245  ℝ^crrx 25431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-tng 24613  df-tcph 25217  df-rrx 25433
This theorem is referenced by:  rrxdsfi  25459  rrxmetfi  25460  rrxtopnfi  46243  rrxtoponfi  46247  qndenserrnopnlem  46253  qndenserrn  46255  rrnprjdstle  46257  rrxlines  48583  rrxlinesc  48585  rrxlinec  48586  rrxsphere  48598
  Copyright terms: Public domain W3C validator