MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxbasefi Structured version   Visualization version   GIF version

Theorem rrxbasefi 25337
Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑m 𝑋) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrxbasefi.x (𝜑𝑋 ∈ Fin)
rrxbasefi.h 𝐻 = (ℝ^‘𝑋)
rrxbasefi.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxbasefi (𝜑𝐵 = (ℝ ↑m 𝑋))

Proof of Theorem rrxbasefi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rrxbasefi.x . . . 4 (𝜑𝑋 ∈ Fin)
2 rrxbasefi.h . . . . 5 𝐻 = (ℝ^‘𝑋)
3 rrxbasefi.b . . . . 5 𝐵 = (Base‘𝐻)
42, 3rrxbase 25315 . . . 4 (𝑋 ∈ Fin → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
51, 4syl 17 . . 3 (𝜑𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
6 ssrab2 4027 . . 3 {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑m 𝑋)
75, 6eqsstrdi 3974 . 2 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
8 simpr 484 . . . 4 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ (ℝ ↑m 𝑋))
9 elmapi 8773 . . . . . 6 (𝑓 ∈ (ℝ ↑m 𝑋) → 𝑓:𝑋⟶ℝ)
109adantl 481 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℝ)
111adantr 480 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
12 c0ex 11106 . . . . . 6 0 ∈ V
1312a1i 11 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 0 ∈ V)
1410, 11, 13fdmfifsupp 9259 . . . 4 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 finSupp 0)
15 rabid 3416 . . . 4 (𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ↔ (𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑓 finSupp 0))
168, 14, 15sylanbrc 583 . . 3 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0})
175eqcomd 2737 . . . 4 (𝜑 → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵)
1817adantr 480 . . 3 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵)
1916, 18eleqtrd 2833 . 2 ((𝜑𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓𝐵)
207, 19eqelssd 3951 1 (𝜑𝐵 = (ℝ ↑m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  cr 11005  0cc0 11006  Basecbs 17120  ℝ^crrx 25310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-refld 21542  df-dsmm 21669  df-frlm 21684  df-tng 24499  df-tcph 25096  df-rrx 25312
This theorem is referenced by:  rrxdsfi  25338  rrxmetfi  25339  rrxtopnfi  46395  rrxtoponfi  46399  qndenserrnopnlem  46405  qndenserrn  46407  rrnprjdstle  46409  rrxlines  48844  rrxlinesc  48846  rrxlinec  48847  rrxsphere  48859
  Copyright terms: Public domain W3C validator