Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxbasefi | Structured version Visualization version GIF version |
Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑m 𝑋) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rrxbasefi.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
rrxbasefi.h | ⊢ 𝐻 = (ℝ^‘𝑋) |
rrxbasefi.b | ⊢ 𝐵 = (Base‘𝐻) |
Ref | Expression |
---|---|
rrxbasefi | ⊢ (𝜑 → 𝐵 = (ℝ ↑m 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxbasefi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | rrxbasefi.h | . . . . 5 ⊢ 𝐻 = (ℝ^‘𝑋) | |
3 | rrxbasefi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐻) | |
4 | 2, 3 | rrxbase 24457 | . . . 4 ⊢ (𝑋 ∈ Fin → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0}) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0}) |
6 | ssrab2 4009 | . . 3 ⊢ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑m 𝑋) | |
7 | 5, 6 | eqsstrdi 3971 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ (ℝ ↑m 𝑋)) | |
9 | elmapi 8595 | . . . . . 6 ⊢ (𝑓 ∈ (ℝ ↑m 𝑋) → 𝑓:𝑋⟶ℝ) | |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓:𝑋⟶ℝ) |
11 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin) |
12 | c0ex 10900 | . . . . . 6 ⊢ 0 ∈ V | |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 0 ∈ V) |
14 | 10, 11, 13 | fdmfifsupp 9068 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 finSupp 0) |
15 | rabid 3304 | . . . 4 ⊢ (𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} ↔ (𝑓 ∈ (ℝ ↑m 𝑋) ∧ 𝑓 finSupp 0)) | |
16 | 8, 14, 15 | sylanbrc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0}) |
17 | 5 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵) |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → {𝑓 ∈ (ℝ ↑m 𝑋) ∣ 𝑓 finSupp 0} = 𝐵) |
19 | 16, 18 | eleqtrd 2841 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝑋)) → 𝑓 ∈ 𝐵) |
20 | 7, 19 | eqelssd 3938 | 1 ⊢ (𝜑 → 𝐵 = (ℝ ↑m 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 finSupp cfsupp 9058 ℝcr 10801 0cc0 10802 Basecbs 16840 ℝ^crrx 24452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-subg 18667 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-field 19909 df-subrg 19937 df-sra 20349 df-rgmod 20350 df-cnfld 20511 df-refld 20722 df-dsmm 20849 df-frlm 20864 df-tng 23646 df-tcph 24238 df-rrx 24454 |
This theorem is referenced by: rrxdsfi 24480 rrxmetfi 24481 rrxtopnfi 43718 rrxtoponfi 43722 qndenserrnopnlem 43728 qndenserrn 43730 rrnprjdstle 43732 rrxlines 45967 rrxlinesc 45969 rrxlinec 45970 rrxsphere 45982 |
Copyright terms: Public domain | W3C validator |