MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmgmdivn0 Structured version   Visualization version   GIF version

Theorem dmgmdivn0 26945
Description: Lemma for lgamf 26959. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
dmgmn0.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
dmgmdivn0.a (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
dmgmdivn0 (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0)

Proof of Theorem dmgmdivn0
StepHypRef Expression
1 dmgmn0.a . . . . 5 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
21eldifad 3929 . . . 4 (𝜑𝐴 ∈ ℂ)
3 dmgmdivn0.a . . . . 5 (𝜑𝑀 ∈ ℕ)
43nncnd 12209 . . . 4 (𝜑𝑀 ∈ ℂ)
53nnne0d 12243 . . . 4 (𝜑𝑀 ≠ 0)
62, 4, 4, 5divdird 12003 . . 3 (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + (𝑀 / 𝑀)))
74, 5dividd 11963 . . . 4 (𝜑 → (𝑀 / 𝑀) = 1)
87oveq2d 7406 . . 3 (𝜑 → ((𝐴 / 𝑀) + (𝑀 / 𝑀)) = ((𝐴 / 𝑀) + 1))
96, 8eqtrd 2765 . 2 (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + 1))
102, 4addcld 11200 . . 3 (𝜑 → (𝐴 + 𝑀) ∈ ℂ)
113nnnn0d 12510 . . . 4 (𝜑𝑀 ∈ ℕ0)
12 dmgmaddn0 26940 . . . 4 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑀 ∈ ℕ0) → (𝐴 + 𝑀) ≠ 0)
131, 11, 12syl2anc 584 . . 3 (𝜑 → (𝐴 + 𝑀) ≠ 0)
1410, 4, 13, 5divne0d 11981 . 2 (𝜑 → ((𝐴 + 𝑀) / 𝑀) ≠ 0)
159, 14eqnetrrd 2994 1 (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2926  cdif 3914  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   / cdiv 11842  cn 12193  0cn0 12449  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537
This theorem is referenced by:  lgamgulmlem2  26947  lgamgulmlem3  26948  lgamgulmlem5  26950  lgamgulmlem6  26951  lgamgulm2  26953  lgamcvg2  26972  gamcvg  26973  gamcvg2lem  26976  regamcl  26978  iprodgam  35736
  Copyright terms: Public domain W3C validator