![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmgmdivn0 | Structured version Visualization version GIF version |
Description: Lemma for lgamf 26782. (Contributed by Mario Carneiro, 3-Jul-2017.) |
Ref | Expression |
---|---|
dmgmn0.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
dmgmdivn0.a | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
Ref | Expression |
---|---|
dmgmdivn0 | ⊢ (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmgmn0.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
2 | 1 | eldifad 3959 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | dmgmdivn0.a | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | 3 | nncnd 12232 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
5 | 3 | nnne0d 12266 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
6 | 2, 4, 4, 5 | divdird 12032 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + (𝑀 / 𝑀))) |
7 | 4, 5 | dividd 11992 | . . . 4 ⊢ (𝜑 → (𝑀 / 𝑀) = 1) |
8 | 7 | oveq2d 7427 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝑀) + (𝑀 / 𝑀)) = ((𝐴 / 𝑀) + 1)) |
9 | 6, 8 | eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + 1)) |
10 | 2, 4 | addcld 11237 | . . 3 ⊢ (𝜑 → (𝐴 + 𝑀) ∈ ℂ) |
11 | 3 | nnnn0d 12536 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
12 | dmgmaddn0 26763 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑀 ∈ ℕ0) → (𝐴 + 𝑀) ≠ 0) | |
13 | 1, 11, 12 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝐴 + 𝑀) ≠ 0) |
14 | 10, 4, 13, 5 | divne0d 12010 | . 2 ⊢ (𝜑 → ((𝐴 + 𝑀) / 𝑀) ≠ 0) |
15 | 9, 14 | eqnetrrd 3007 | 1 ⊢ (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ≠ wne 2938 ∖ cdif 3944 (class class class)co 7411 ℂcc 11110 0cc0 11112 1c1 11113 + caddc 11115 / cdiv 11875 ℕcn 12216 ℕ0cn0 12476 ℤcz 12562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-n0 12477 df-z 12563 |
This theorem is referenced by: lgamgulmlem2 26770 lgamgulmlem3 26771 lgamgulmlem5 26773 lgamgulmlem6 26774 lgamgulm2 26776 lgamcvg2 26795 gamcvg 26796 gamcvg2lem 26799 regamcl 26801 iprodgam 35016 |
Copyright terms: Public domain | W3C validator |