MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evthicc Structured version   Visualization version   GIF version

Theorem evthicc 25360
Description: Specialization of the Extreme Value Theorem to a closed interval of . (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
evthicc.1 (𝜑𝐴 ∈ ℝ)
evthicc.2 (𝜑𝐵 ∈ ℝ)
evthicc.3 (𝜑𝐴𝐵)
evthicc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
evthicc (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝑤,𝐴   𝑥,𝐵,𝑦   𝑤,𝐵,𝑧   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜑,𝑤,𝑧   𝑤,𝐹,𝑧

Proof of Theorem evthicc
StepHypRef Expression
1 eqid 2729 . . . 4 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
2 eqid 2729 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
3 evthicc.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
4 evthicc.2 . . . . 5 (𝜑𝐵 ∈ ℝ)
5 eqid 2729 . . . . . 6 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
62, 5icccmp 24714 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
73, 4, 6syl2anc 584 . . . 4 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
8 evthicc.4 . . . . 5 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
9 iccssre 13390 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
103, 4, 9syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
11 ax-resscn 11125 . . . . . . . 8 ℝ ⊆ ℂ
1210, 11sstrdi 3959 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
13 eqid 2729 . . . . . . . 8 ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) = ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))
14 eqid 2729 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
15 eqid 2729 . . . . . . . 8 (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
16 eqid 2729 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1714, 16tgioo 24684 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1813, 14, 15, 17cncfmet 24802 . . . . . . 7 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
1912, 11, 18sylancl 586 . . . . . 6 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
202, 15resubmet 24690 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2110, 20syl 17 . . . . . . 7 (𝜑 → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2221oveq1d 7402 . . . . . 6 (𝜑 → ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
2319, 22eqtrd 2764 . . . . 5 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
248, 23eleqtrd 2830 . . . 4 (𝜑𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
25 retop 24649 . . . . . 6 (topGen‘ran (,)) ∈ Top
26 uniretop 24650 . . . . . . 7 ℝ = (topGen‘ran (,))
2726restuni 23049 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2825, 10, 27sylancr 587 . . . . 5 (𝜑 → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
293rexrd 11224 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
304rexrd 11224 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
31 evthicc.3 . . . . . . 7 (𝜑𝐴𝐵)
32 lbicc2 13425 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
3329, 30, 31, 32syl3anc 1373 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
3433ne0d 4305 . . . . 5 (𝜑 → (𝐴[,]𝐵) ≠ ∅)
3528, 34eqnetrrd 2993 . . . 4 (𝜑 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ≠ ∅)
361, 2, 7, 24, 35evth 24858 . . 3 (𝜑 → ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥))
3728raleqdv 3299 . . . 4 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3828, 37rexeqbidv 3320 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3936, 38mpbird 257 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥))
401, 2, 7, 24, 35evth2 24859 . . 3 (𝜑 → ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤))
4128raleqdv 3299 . . . 4 (𝜑 → (∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4228, 41rexeqbidv 3320 . . 3 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4340, 42mpbird 257 . 2 (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤))
4439, 43jca 511 1 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914  c0 4296   cuni 4871   class class class wbr 5107   × cxp 5636  ran crn 5639  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  *cxr 11207  cle 11209  cmin 11405  (,)cioo 13306  [,]cicc 13309  abscabs 15200  t crest 17383  topGenctg 17400  MetOpencmopn 21254  Topctop 22780   Cn ccn 23111  Compccmp 23273  cnccncf 24769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771
This theorem is referenced by:  evthicc2  25361  cniccbdd  25362  rolle  25894  dvivthlem1  25913  itgsubst  25956  evthiccabs  45494  cncficcgt0  45886
  Copyright terms: Public domain W3C validator