MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evthicc Structured version   Visualization version   GIF version

Theorem evthicc 25507
Description: Specialization of the Extreme Value Theorem to a closed interval of . (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
evthicc.1 (𝜑𝐴 ∈ ℝ)
evthicc.2 (𝜑𝐵 ∈ ℝ)
evthicc.3 (𝜑𝐴𝐵)
evthicc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
evthicc (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝑤,𝐴   𝑥,𝐵,𝑦   𝑤,𝐵,𝑧   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜑,𝑤,𝑧   𝑤,𝐹,𝑧

Proof of Theorem evthicc
StepHypRef Expression
1 eqid 2734 . . . 4 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
2 eqid 2734 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
3 evthicc.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
4 evthicc.2 . . . . 5 (𝜑𝐵 ∈ ℝ)
5 eqid 2734 . . . . . 6 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
62, 5icccmp 24860 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
73, 4, 6syl2anc 584 . . . 4 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
8 evthicc.4 . . . . 5 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
9 iccssre 13465 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
103, 4, 9syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
11 ax-resscn 11209 . . . . . . . 8 ℝ ⊆ ℂ
1210, 11sstrdi 4007 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
13 eqid 2734 . . . . . . . 8 ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) = ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))
14 eqid 2734 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
15 eqid 2734 . . . . . . . 8 (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
16 eqid 2734 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1714, 16tgioo 24831 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1813, 14, 15, 17cncfmet 24948 . . . . . . 7 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
1912, 11, 18sylancl 586 . . . . . 6 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
202, 15resubmet 24837 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2110, 20syl 17 . . . . . . 7 (𝜑 → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2221oveq1d 7445 . . . . . 6 (𝜑 → ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
2319, 22eqtrd 2774 . . . . 5 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
248, 23eleqtrd 2840 . . . 4 (𝜑𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
25 retop 24797 . . . . . 6 (topGen‘ran (,)) ∈ Top
26 uniretop 24798 . . . . . . 7 ℝ = (topGen‘ran (,))
2726restuni 23185 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2825, 10, 27sylancr 587 . . . . 5 (𝜑 → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
293rexrd 11308 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
304rexrd 11308 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
31 evthicc.3 . . . . . . 7 (𝜑𝐴𝐵)
32 lbicc2 13500 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
3329, 30, 31, 32syl3anc 1370 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
3433ne0d 4347 . . . . 5 (𝜑 → (𝐴[,]𝐵) ≠ ∅)
3528, 34eqnetrrd 3006 . . . 4 (𝜑 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ≠ ∅)
361, 2, 7, 24, 35evth 25004 . . 3 (𝜑 → ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥))
3728raleqdv 3323 . . . 4 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3828, 37rexeqbidv 3344 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3936, 38mpbird 257 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥))
401, 2, 7, 24, 35evth2 25005 . . 3 (𝜑 → ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤))
4128raleqdv 3323 . . . 4 (𝜑 → (∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4228, 41rexeqbidv 3344 . . 3 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4340, 42mpbird 257 . 2 (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤))
4439, 43jca 511 1 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  wss 3962  c0 4338   cuni 4911   class class class wbr 5147   × cxp 5686  ran crn 5689  cres 5690  ccom 5692  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  *cxr 11291  cle 11293  cmin 11489  (,)cioo 13383  [,]cicc 13386  abscabs 15269  t crest 17466  topGenctg 17483  MetOpencmopn 21371  Topctop 22914   Cn ccn 23247  Compccmp 23409  cnccncf 24915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cn 23250  df-cnp 23251  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917
This theorem is referenced by:  evthicc2  25508  cniccbdd  25509  rolle  26042  dvivthlem1  26061  itgsubst  26104  evthiccabs  45448  cncficcgt0  45843
  Copyright terms: Public domain W3C validator