Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evthicc | Structured version Visualization version GIF version |
Description: Specialization of the Extreme Value Theorem to a closed interval of ℝ. (Contributed by Mario Carneiro, 12-Aug-2014.) |
Ref | Expression |
---|---|
evthicc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
evthicc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
evthicc.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
evthicc.4 | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
Ref | Expression |
---|---|
evthicc | ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) | |
2 | eqid 2740 | . . . 4 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
3 | evthicc.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | evthicc.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | eqid 2740 | . . . . . 6 ⊢ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) | |
6 | 2, 5 | icccmp 23986 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp) |
7 | 3, 4, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp) |
8 | evthicc.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
9 | iccssre 13160 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
10 | 3, 4, 9 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
11 | ax-resscn 10929 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
12 | 10, 11 | sstrdi 3938 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
13 | eqid 2740 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) = ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) | |
14 | eqid 2740 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
15 | eqid 2740 | . . . . . . . 8 ⊢ (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) | |
16 | eqid 2740 | . . . . . . . . 9 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
17 | 14, 16 | tgioo 23957 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
18 | 13, 14, 15, 17 | cncfmet 24070 | . . . . . . 7 ⊢ (((𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,)))) |
19 | 12, 11, 18 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,)))) |
20 | 2, 15 | resubmet 23963 | . . . . . . . 8 ⊢ ((𝐴[,]𝐵) ⊆ ℝ → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
21 | 10, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
22 | 21 | oveq1d 7286 | . . . . . 6 ⊢ (𝜑 → ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,)))) |
23 | 19, 22 | eqtrd 2780 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,)))) |
24 | 8, 23 | eleqtrd 2843 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,)))) |
25 | retop 23923 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
26 | uniretop 23924 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
27 | 26 | restuni 22311 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴[,]𝐵) = ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
28 | 25, 10, 27 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) = ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
29 | 3 | rexrd 11026 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
30 | 4 | rexrd 11026 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
31 | evthicc.3 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
32 | lbicc2 13195 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
33 | 29, 30, 31, 32 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
34 | 33 | ne0d 4275 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) ≠ ∅) |
35 | 28, 34 | eqnetrrd 3014 | . . . 4 ⊢ (𝜑 → ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ≠ ∅) |
36 | 1, 2, 7, 24, 35 | evth 24120 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑦) ≤ (𝐹‘𝑥)) |
37 | 28 | raleqdv 3347 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ↔ ∀𝑦 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
38 | 28, 37 | rexeqbidv 3336 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ↔ ∃𝑥 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
39 | 36, 38 | mpbird 256 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥)) |
40 | 1, 2, 7, 24, 35 | evth2 24121 | . . 3 ⊢ (𝜑 → ∃𝑧 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑧) ≤ (𝐹‘𝑤)) |
41 | 28 | raleqdv 3347 | . . . 4 ⊢ (𝜑 → (∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤) ↔ ∀𝑤 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
42 | 28, 41 | rexeqbidv 3336 | . . 3 ⊢ (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤) ↔ ∃𝑧 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
43 | 40, 42 | mpbird 256 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤)) |
44 | 39, 43 | jca 512 | 1 ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 ⊆ wss 3892 ∅c0 4262 ∪ cuni 4845 class class class wbr 5079 × cxp 5588 ran crn 5591 ↾ cres 5592 ∘ ccom 5594 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ℝcr 10871 ℝ*cxr 11009 ≤ cle 11011 − cmin 11205 (,)cioo 13078 [,]cicc 13081 abscabs 14943 ↾t crest 17129 topGenctg 17146 MetOpencmopn 20585 Topctop 22040 Cn ccn 22373 Compccmp 22535 –cn→ccncf 24037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-map 8600 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-fi 9148 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ioo 13082 df-icc 13085 df-fz 13239 df-fzo 13382 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-rest 17131 df-topn 17132 df-0g 17150 df-gsum 17151 df-topgen 17152 df-pt 17153 df-prds 17156 df-xrs 17211 df-qtop 17216 df-imas 17217 df-xps 17219 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-mulg 18699 df-cntz 18921 df-cmn 19386 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cn 22376 df-cnp 22377 df-cmp 22536 df-tx 22711 df-hmeo 22904 df-xms 23471 df-ms 23472 df-tms 23473 df-cncf 24039 |
This theorem is referenced by: evthicc2 24622 cniccbdd 24623 rolle 25152 dvivthlem1 25170 itgsubst 25211 evthiccabs 43005 cncficcgt0 43400 |
Copyright terms: Public domain | W3C validator |