![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evthicc | Structured version Visualization version GIF version |
Description: Specialization of the Extreme Value Theorem to a closed interval of ℝ. (Contributed by Mario Carneiro, 12-Aug-2014.) |
Ref | Expression |
---|---|
evthicc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
evthicc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
evthicc.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
evthicc.4 | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
Ref | Expression |
---|---|
evthicc | ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . 4 ⊢ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) | |
2 | eqid 2778 | . . . 4 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
3 | evthicc.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | evthicc.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | eqid 2778 | . . . . . 6 ⊢ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) | |
6 | 2, 5 | icccmp 23036 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp) |
7 | 3, 4, 6 | syl2anc 579 | . . . 4 ⊢ (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp) |
8 | evthicc.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
9 | iccssre 12567 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
10 | 3, 4, 9 | syl2anc 579 | . . . . . . . 8 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
11 | ax-resscn 10329 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
12 | 10, 11 | syl6ss 3833 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
13 | eqid 2778 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) = ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) | |
14 | eqid 2778 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
15 | eqid 2778 | . . . . . . . 8 ⊢ (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) | |
16 | eqid 2778 | . . . . . . . . 9 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
17 | 14, 16 | tgioo 23007 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
18 | 13, 14, 15, 17 | cncfmet 23119 | . . . . . . 7 ⊢ (((𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,)))) |
19 | 12, 11, 18 | sylancl 580 | . . . . . 6 ⊢ (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,)))) |
20 | 2, 15 | resubmet 23013 | . . . . . . . 8 ⊢ ((𝐴[,]𝐵) ⊆ ℝ → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
21 | 10, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
22 | 21 | oveq1d 6937 | . . . . . 6 ⊢ (𝜑 → ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,)))) |
23 | 19, 22 | eqtrd 2814 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,)))) |
24 | 8, 23 | eleqtrd 2861 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,)))) |
25 | retop 22973 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
26 | uniretop 22974 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
27 | 26 | restuni 21374 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴[,]𝐵) = ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
28 | 25, 10, 27 | sylancr 581 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) = ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
29 | 3 | rexrd 10426 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
30 | 4 | rexrd 10426 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
31 | evthicc.3 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
32 | lbicc2 12602 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
33 | 29, 30, 31, 32 | syl3anc 1439 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
34 | 33 | ne0d 4150 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) ≠ ∅) |
35 | 28, 34 | eqnetrrd 3037 | . . . 4 ⊢ (𝜑 → ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ≠ ∅) |
36 | 1, 2, 7, 24, 35 | evth 23166 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑦) ≤ (𝐹‘𝑥)) |
37 | 28 | raleqdv 3340 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ↔ ∀𝑦 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
38 | 28, 37 | rexeqbidv 3327 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ↔ ∃𝑥 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
39 | 36, 38 | mpbird 249 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥)) |
40 | 1, 2, 7, 24, 35 | evth2 23167 | . . 3 ⊢ (𝜑 → ∃𝑧 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑧) ≤ (𝐹‘𝑤)) |
41 | 28 | raleqdv 3340 | . . . 4 ⊢ (𝜑 → (∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤) ↔ ∀𝑤 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
42 | 28, 41 | rexeqbidv 3327 | . . 3 ⊢ (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤) ↔ ∃𝑧 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
43 | 40, 42 | mpbird 249 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤)) |
44 | 39, 43 | jca 507 | 1 ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃wrex 3091 ⊆ wss 3792 ∅c0 4141 ∪ cuni 4671 class class class wbr 4886 × cxp 5353 ran crn 5356 ↾ cres 5357 ∘ ccom 5359 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 ℝcr 10271 ℝ*cxr 10410 ≤ cle 10412 − cmin 10606 (,)cioo 12487 [,]cicc 12490 abscabs 14381 ↾t crest 16467 topGenctg 16484 MetOpencmopn 20132 Topctop 21105 Cn ccn 21436 Compccmp 21598 –cn→ccncf 23087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-icc 12494 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cn 21439 df-cnp 21440 df-cmp 21599 df-tx 21774 df-hmeo 21967 df-xms 22533 df-ms 22534 df-tms 22535 df-cncf 23089 |
This theorem is referenced by: evthicc2 23664 cniccbdd 23665 rolle 24190 dvivthlem1 24208 itgsubst 24249 evthiccabs 40630 cncficcgt0 41029 |
Copyright terms: Public domain | W3C validator |