MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evthicc Structured version   Visualization version   GIF version

Theorem evthicc 24623
Description: Specialization of the Extreme Value Theorem to a closed interval of . (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
evthicc.1 (𝜑𝐴 ∈ ℝ)
evthicc.2 (𝜑𝐵 ∈ ℝ)
evthicc.3 (𝜑𝐴𝐵)
evthicc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
evthicc (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝑤,𝐴   𝑥,𝐵,𝑦   𝑤,𝐵,𝑧   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜑,𝑤,𝑧   𝑤,𝐹,𝑧

Proof of Theorem evthicc
StepHypRef Expression
1 eqid 2738 . . . 4 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
2 eqid 2738 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
3 evthicc.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
4 evthicc.2 . . . . 5 (𝜑𝐵 ∈ ℝ)
5 eqid 2738 . . . . . 6 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
62, 5icccmp 23988 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
73, 4, 6syl2anc 584 . . . 4 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
8 evthicc.4 . . . . 5 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
9 iccssre 13161 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
103, 4, 9syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
11 ax-resscn 10928 . . . . . . . 8 ℝ ⊆ ℂ
1210, 11sstrdi 3933 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
13 eqid 2738 . . . . . . . 8 ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) = ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))
14 eqid 2738 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
15 eqid 2738 . . . . . . . 8 (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
16 eqid 2738 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1714, 16tgioo 23959 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1813, 14, 15, 17cncfmet 24072 . . . . . . 7 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
1912, 11, 18sylancl 586 . . . . . 6 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
202, 15resubmet 23965 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2110, 20syl 17 . . . . . . 7 (𝜑 → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2221oveq1d 7290 . . . . . 6 (𝜑 → ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
2319, 22eqtrd 2778 . . . . 5 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
248, 23eleqtrd 2841 . . . 4 (𝜑𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
25 retop 23925 . . . . . 6 (topGen‘ran (,)) ∈ Top
26 uniretop 23926 . . . . . . 7 ℝ = (topGen‘ran (,))
2726restuni 22313 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2825, 10, 27sylancr 587 . . . . 5 (𝜑 → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
293rexrd 11025 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
304rexrd 11025 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
31 evthicc.3 . . . . . . 7 (𝜑𝐴𝐵)
32 lbicc2 13196 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
3329, 30, 31, 32syl3anc 1370 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
3433ne0d 4269 . . . . 5 (𝜑 → (𝐴[,]𝐵) ≠ ∅)
3528, 34eqnetrrd 3012 . . . 4 (𝜑 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ≠ ∅)
361, 2, 7, 24, 35evth 24122 . . 3 (𝜑 → ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥))
3728raleqdv 3348 . . . 4 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3828, 37rexeqbidv 3337 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3936, 38mpbird 256 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥))
401, 2, 7, 24, 35evth2 24123 . . 3 (𝜑 → ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤))
4128raleqdv 3348 . . . 4 (𝜑 → (∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4228, 41rexeqbidv 3337 . . 3 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4340, 42mpbird 256 . 2 (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤))
4439, 43jca 512 1 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  c0 4256   cuni 4839   class class class wbr 5074   × cxp 5587  ran crn 5590  cres 5591  ccom 5593  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  *cxr 11008  cle 11010  cmin 11205  (,)cioo 13079  [,]cicc 13082  abscabs 14945  t crest 17131  topGenctg 17148  MetOpencmopn 20587  Topctop 22042   Cn ccn 22375  Compccmp 22537  cnccncf 24039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041
This theorem is referenced by:  evthicc2  24624  cniccbdd  24625  rolle  25154  dvivthlem1  25172  itgsubst  25213  evthiccabs  43034  cncficcgt0  43429
  Copyright terms: Public domain W3C validator