MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evthicc Structured version   Visualization version   GIF version

Theorem evthicc 25390
Description: Specialization of the Extreme Value Theorem to a closed interval of . (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
evthicc.1 (𝜑𝐴 ∈ ℝ)
evthicc.2 (𝜑𝐵 ∈ ℝ)
evthicc.3 (𝜑𝐴𝐵)
evthicc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
evthicc (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝑤,𝐴   𝑥,𝐵,𝑦   𝑤,𝐵,𝑧   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜑,𝑤,𝑧   𝑤,𝐹,𝑧

Proof of Theorem evthicc
StepHypRef Expression
1 eqid 2733 . . . 4 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
2 eqid 2733 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
3 evthicc.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
4 evthicc.2 . . . . 5 (𝜑𝐵 ∈ ℝ)
5 eqid 2733 . . . . . 6 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
62, 5icccmp 24744 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
73, 4, 6syl2anc 584 . . . 4 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
8 evthicc.4 . . . . 5 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
9 iccssre 13333 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
103, 4, 9syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
11 ax-resscn 11072 . . . . . . . 8 ℝ ⊆ ℂ
1210, 11sstrdi 3943 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
13 eqid 2733 . . . . . . . 8 ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) = ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))
14 eqid 2733 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
15 eqid 2733 . . . . . . . 8 (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
16 eqid 2733 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1714, 16tgioo 24714 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1813, 14, 15, 17cncfmet 24832 . . . . . . 7 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
1912, 11, 18sylancl 586 . . . . . 6 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
202, 15resubmet 24720 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2110, 20syl 17 . . . . . . 7 (𝜑 → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2221oveq1d 7369 . . . . . 6 (𝜑 → ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
2319, 22eqtrd 2768 . . . . 5 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
248, 23eleqtrd 2835 . . . 4 (𝜑𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
25 retop 24679 . . . . . 6 (topGen‘ran (,)) ∈ Top
26 uniretop 24680 . . . . . . 7 ℝ = (topGen‘ran (,))
2726restuni 23080 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2825, 10, 27sylancr 587 . . . . 5 (𝜑 → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
293rexrd 11171 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
304rexrd 11171 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
31 evthicc.3 . . . . . . 7 (𝜑𝐴𝐵)
32 lbicc2 13368 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
3329, 30, 31, 32syl3anc 1373 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
3433ne0d 4291 . . . . 5 (𝜑 → (𝐴[,]𝐵) ≠ ∅)
3528, 34eqnetrrd 2997 . . . 4 (𝜑 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ≠ ∅)
361, 2, 7, 24, 35evth 24888 . . 3 (𝜑 → ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥))
3728raleqdv 3293 . . . 4 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3828, 37rexeqbidv 3314 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3936, 38mpbird 257 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥))
401, 2, 7, 24, 35evth2 24889 . . 3 (𝜑 → ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤))
4128raleqdv 3293 . . . 4 (𝜑 → (∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4228, 41rexeqbidv 3314 . . 3 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4340, 42mpbird 257 . 2 (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤))
4439, 43jca 511 1 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898  c0 4282   cuni 4860   class class class wbr 5095   × cxp 5619  ran crn 5622  cres 5623  ccom 5625  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  *cxr 11154  cle 11156  cmin 11353  (,)cioo 13249  [,]cicc 13252  abscabs 15145  t crest 17328  topGenctg 17345  MetOpencmopn 21285  Topctop 22811   Cn ccn 23142  Compccmp 23304  cnccncf 24799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-icc 13256  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cn 23145  df-cnp 23146  df-cmp 23305  df-tx 23480  df-hmeo 23673  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801
This theorem is referenced by:  evthicc2  25391  cniccbdd  25392  rolle  25924  dvivthlem1  25943  itgsubst  25986  evthiccabs  45623  cncficcgt0  46013
  Copyright terms: Public domain W3C validator