MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evthicc Structured version   Visualization version   GIF version

Theorem evthicc 25430
Description: Specialization of the Extreme Value Theorem to a closed interval of . (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
evthicc.1 (𝜑𝐴 ∈ ℝ)
evthicc.2 (𝜑𝐵 ∈ ℝ)
evthicc.3 (𝜑𝐴𝐵)
evthicc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
evthicc (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝑤,𝐴   𝑥,𝐵,𝑦   𝑤,𝐵,𝑧   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜑,𝑤,𝑧   𝑤,𝐹,𝑧

Proof of Theorem evthicc
StepHypRef Expression
1 eqid 2734 . . . 4 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
2 eqid 2734 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
3 evthicc.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
4 evthicc.2 . . . . 5 (𝜑𝐵 ∈ ℝ)
5 eqid 2734 . . . . . 6 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
62, 5icccmp 24783 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
73, 4, 6syl2anc 584 . . . 4 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
8 evthicc.4 . . . . 5 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
9 iccssre 13451 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
103, 4, 9syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
11 ax-resscn 11194 . . . . . . . 8 ℝ ⊆ ℂ
1210, 11sstrdi 3976 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
13 eqid 2734 . . . . . . . 8 ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) = ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))
14 eqid 2734 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
15 eqid 2734 . . . . . . . 8 (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
16 eqid 2734 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1714, 16tgioo 24753 . . . . . . . 8 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1813, 14, 15, 17cncfmet 24871 . . . . . . 7 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
1912, 11, 18sylancl 586 . . . . . 6 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))))
202, 15resubmet 24759 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2110, 20syl 17 . . . . . . 7 (𝜑 → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2221oveq1d 7428 . . . . . 6 (𝜑 → ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
2319, 22eqtrd 2769 . . . . 5 (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
248, 23eleqtrd 2835 . . . 4 (𝜑𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,))))
25 retop 24718 . . . . . 6 (topGen‘ran (,)) ∈ Top
26 uniretop 24719 . . . . . . 7 ℝ = (topGen‘ran (,))
2726restuni 23116 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
2825, 10, 27sylancr 587 . . . . 5 (𝜑 → (𝐴[,]𝐵) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
293rexrd 11293 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
304rexrd 11293 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
31 evthicc.3 . . . . . . 7 (𝜑𝐴𝐵)
32 lbicc2 13486 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
3329, 30, 31, 32syl3anc 1372 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
3433ne0d 4322 . . . . 5 (𝜑 → (𝐴[,]𝐵) ≠ ∅)
3528, 34eqnetrrd 2999 . . . 4 (𝜑 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ≠ ∅)
361, 2, 7, 24, 35evth 24927 . . 3 (𝜑 → ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥))
3728raleqdv 3309 . . . 4 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3828, 37rexeqbidv 3330 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ↔ ∃𝑥 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑦) ≤ (𝐹𝑥)))
3936, 38mpbird 257 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥))
401, 2, 7, 24, 35evth2 24928 . . 3 (𝜑 → ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤))
4128raleqdv 3309 . . . 4 (𝜑 → (∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4228, 41rexeqbidv 3330 . . 3 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤) ↔ ∃𝑧 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹𝑧) ≤ (𝐹𝑤)))
4340, 42mpbird 257 . 2 (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤))
4439, 43jca 511 1 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3931  c0 4313   cuni 4887   class class class wbr 5123   × cxp 5663  ran crn 5666  cres 5667  ccom 5669  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  *cxr 11276  cle 11278  cmin 11474  (,)cioo 13369  [,]cicc 13372  abscabs 15255  t crest 17436  topGenctg 17453  MetOpencmopn 21316  Topctop 22847   Cn ccn 23178  Compccmp 23340  cnccncf 24838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-icc 13376  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cn 23181  df-cnp 23182  df-cmp 23341  df-tx 23516  df-hmeo 23709  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840
This theorem is referenced by:  evthicc2  25431  cniccbdd  25432  rolle  25964  dvivthlem1  25983  itgsubst  26026  evthiccabs  45466  cncficcgt0  45860
  Copyright terms: Public domain W3C validator