MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandmcj Structured version   Visualization version   GIF version

Theorem atandmcj 25964
Description: The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandmcj (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)

Proof of Theorem atandmcj
StepHypRef Expression
1 atandm3 25933 . . . 4 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1))
21simplbi 497 . . 3 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
32cjcld 14835 . 2 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ ℂ)
4 2nn0 12180 . . . 4 2 ∈ ℕ0
5 cjexp 14789 . . . 4 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2))
62, 4, 5sylancl 585 . . 3 (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2))
72sqcld 13790 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
87cjcjd 14838 . . . . 5 (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) = (𝐴↑2))
91simprbi 496 . . . . 5 (𝐴 ∈ dom arctan → (𝐴↑2) ≠ -1)
108, 9eqnetrd 3010 . . . 4 (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) ≠ -1)
11 fveq2 6756 . . . . . 6 ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = (∗‘-1))
12 neg1rr 12018 . . . . . . 7 -1 ∈ ℝ
13 cjre 14778 . . . . . . 7 (-1 ∈ ℝ → (∗‘-1) = -1)
1412, 13ax-mp 5 . . . . . 6 (∗‘-1) = -1
1511, 14eqtrdi 2795 . . . . 5 ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = -1)
1615necon3i 2975 . . . 4 ((∗‘(∗‘(𝐴↑2))) ≠ -1 → (∗‘(𝐴↑2)) ≠ -1)
1710, 16syl 17 . . 3 (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) ≠ -1)
186, 17eqnetrrd 3011 . 2 (𝐴 ∈ dom arctan → ((∗‘𝐴)↑2) ≠ -1)
19 atandm3 25933 . 2 ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ ((∗‘𝐴)↑2) ≠ -1))
203, 18, 19sylanbrc 582 1 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  dom cdm 5580  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  1c1 10803  -cneg 11136  2c2 11958  0cn0 12163  cexp 13710  ccj 14735  arctancatan 25919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-atan 25922
This theorem is referenced by:  atancj  25965
  Copyright terms: Public domain W3C validator