Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > atandmcj | Structured version Visualization version GIF version |
Description: The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
atandmcj | ⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atandm3 25563 | . . . 4 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | |
2 | 1 | simplbi 501 | . . 3 ⊢ (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ) |
3 | 2 | cjcld 14603 | . 2 ⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ ℂ) |
4 | 2nn0 11951 | . . . 4 ⊢ 2 ∈ ℕ0 | |
5 | cjexp 14557 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2)) | |
6 | 2, 4, 5 | sylancl 589 | . . 3 ⊢ (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2)) |
7 | 2 | sqcld 13558 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ) |
8 | 7 | cjcjd 14606 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) = (𝐴↑2)) |
9 | 1 | simprbi 500 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → (𝐴↑2) ≠ -1) |
10 | 8, 9 | eqnetrd 3018 | . . . 4 ⊢ (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) ≠ -1) |
11 | fveq2 6658 | . . . . . 6 ⊢ ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = (∗‘-1)) | |
12 | neg1rr 11789 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
13 | cjre 14546 | . . . . . . 7 ⊢ (-1 ∈ ℝ → (∗‘-1) = -1) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ (∗‘-1) = -1 |
15 | 11, 14 | eqtrdi 2809 | . . . . 5 ⊢ ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = -1) |
16 | 15 | necon3i 2983 | . . . 4 ⊢ ((∗‘(∗‘(𝐴↑2))) ≠ -1 → (∗‘(𝐴↑2)) ≠ -1) |
17 | 10, 16 | syl 17 | . . 3 ⊢ (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) ≠ -1) |
18 | 6, 17 | eqnetrrd 3019 | . 2 ⊢ (𝐴 ∈ dom arctan → ((∗‘𝐴)↑2) ≠ -1) |
19 | atandm3 25563 | . 2 ⊢ ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ ((∗‘𝐴)↑2) ≠ -1)) | |
20 | 3, 18, 19 | sylanbrc 586 | 1 ⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 dom cdm 5524 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 ℝcr 10574 1c1 10576 -cneg 10909 2c2 11729 ℕ0cn0 11934 ↑cexp 13479 ∗ccj 14503 arctancatan 25549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-uz 12283 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-atan 25552 |
This theorem is referenced by: atancj 25595 |
Copyright terms: Public domain | W3C validator |