MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandmcj Structured version   Visualization version   GIF version

Theorem atandmcj 25419
Description: The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandmcj (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)

Proof of Theorem atandmcj
StepHypRef Expression
1 atandm3 25388 . . . 4 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1))
21simplbi 498 . . 3 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
32cjcld 14550 . 2 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ ℂ)
4 2nn0 11908 . . . 4 2 ∈ ℕ0
5 cjexp 14504 . . . 4 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2))
62, 4, 5sylancl 586 . . 3 (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2))
72sqcld 13503 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
87cjcjd 14553 . . . . 5 (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) = (𝐴↑2))
91simprbi 497 . . . . 5 (𝐴 ∈ dom arctan → (𝐴↑2) ≠ -1)
108, 9eqnetrd 3088 . . . 4 (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) ≠ -1)
11 fveq2 6669 . . . . . 6 ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = (∗‘-1))
12 neg1rr 11746 . . . . . . 7 -1 ∈ ℝ
13 cjre 14493 . . . . . . 7 (-1 ∈ ℝ → (∗‘-1) = -1)
1412, 13ax-mp 5 . . . . . 6 (∗‘-1) = -1
1511, 14syl6eq 2877 . . . . 5 ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = -1)
1615necon3i 3053 . . . 4 ((∗‘(∗‘(𝐴↑2))) ≠ -1 → (∗‘(𝐴↑2)) ≠ -1)
1710, 16syl 17 . . 3 (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) ≠ -1)
186, 17eqnetrrd 3089 . 2 (𝐴 ∈ dom arctan → ((∗‘𝐴)↑2) ≠ -1)
19 atandm3 25388 . 2 ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ ((∗‘𝐴)↑2) ≠ -1))
203, 18, 19sylanbrc 583 1 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wne 3021  dom cdm 5554  cfv 6354  (class class class)co 7150  cc 10529  cr 10530  1c1 10532  -cneg 10865  2c2 11686  0cn0 11891  cexp 13424  ccj 14450  arctancatan 25374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-atan 25377
This theorem is referenced by:  atancj  25420
  Copyright terms: Public domain W3C validator