MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandmcj Structured version   Visualization version   GIF version

Theorem atandmcj 26861
Description: The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandmcj (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)

Proof of Theorem atandmcj
StepHypRef Expression
1 atandm3 26830 . . . 4 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1))
21simplbi 496 . . 3 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
32cjcld 15183 . 2 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ ℂ)
4 2nn0 12527 . . . 4 2 ∈ ℕ0
5 cjexp 15137 . . . 4 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2))
62, 4, 5sylancl 584 . . 3 (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2))
72sqcld 14148 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
87cjcjd 15186 . . . . 5 (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) = (𝐴↑2))
91simprbi 495 . . . . 5 (𝐴 ∈ dom arctan → (𝐴↑2) ≠ -1)
108, 9eqnetrd 3005 . . . 4 (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) ≠ -1)
11 fveq2 6902 . . . . . 6 ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = (∗‘-1))
12 neg1rr 12365 . . . . . . 7 -1 ∈ ℝ
13 cjre 15126 . . . . . . 7 (-1 ∈ ℝ → (∗‘-1) = -1)
1412, 13ax-mp 5 . . . . . 6 (∗‘-1) = -1
1511, 14eqtrdi 2784 . . . . 5 ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = -1)
1615necon3i 2970 . . . 4 ((∗‘(∗‘(𝐴↑2))) ≠ -1 → (∗‘(𝐴↑2)) ≠ -1)
1710, 16syl 17 . . 3 (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) ≠ -1)
186, 17eqnetrrd 3006 . 2 (𝐴 ∈ dom arctan → ((∗‘𝐴)↑2) ≠ -1)
19 atandm3 26830 . 2 ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ ((∗‘𝐴)↑2) ≠ -1))
203, 18, 19sylanbrc 581 1 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wne 2937  dom cdm 5682  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  1c1 11147  -cneg 11483  2c2 12305  0cn0 12510  cexp 14066  ccj 15083  arctancatan 26816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-atan 26819
This theorem is referenced by:  atancj  26862
  Copyright terms: Public domain W3C validator