Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > atandmcj | Structured version Visualization version GIF version |
Description: The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
atandmcj | ⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atandm3 26056 | . . . 4 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | |
2 | 1 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ) |
3 | 2 | cjcld 14935 | . 2 ⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ ℂ) |
4 | 2nn0 12278 | . . . 4 ⊢ 2 ∈ ℕ0 | |
5 | cjexp 14889 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2)) | |
6 | 2, 4, 5 | sylancl 585 | . . 3 ⊢ (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) = ((∗‘𝐴)↑2)) |
7 | 2 | sqcld 13890 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ) |
8 | 7 | cjcjd 14938 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) = (𝐴↑2)) |
9 | 1 | simprbi 496 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → (𝐴↑2) ≠ -1) |
10 | 8, 9 | eqnetrd 3006 | . . . 4 ⊢ (𝐴 ∈ dom arctan → (∗‘(∗‘(𝐴↑2))) ≠ -1) |
11 | fveq2 6792 | . . . . . 6 ⊢ ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = (∗‘-1)) | |
12 | neg1rr 12116 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
13 | cjre 14878 | . . . . . . 7 ⊢ (-1 ∈ ℝ → (∗‘-1) = -1) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ (∗‘-1) = -1 |
15 | 11, 14 | eqtrdi 2789 | . . . . 5 ⊢ ((∗‘(𝐴↑2)) = -1 → (∗‘(∗‘(𝐴↑2))) = -1) |
16 | 15 | necon3i 2971 | . . . 4 ⊢ ((∗‘(∗‘(𝐴↑2))) ≠ -1 → (∗‘(𝐴↑2)) ≠ -1) |
17 | 10, 16 | syl 17 | . . 3 ⊢ (𝐴 ∈ dom arctan → (∗‘(𝐴↑2)) ≠ -1) |
18 | 6, 17 | eqnetrrd 3007 | . 2 ⊢ (𝐴 ∈ dom arctan → ((∗‘𝐴)↑2) ≠ -1) |
19 | atandm3 26056 | . 2 ⊢ ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ ((∗‘𝐴)↑2) ≠ -1)) | |
20 | 3, 18, 19 | sylanbrc 582 | 1 ⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 dom cdm 5591 ‘cfv 6447 (class class class)co 7295 ℂcc 10897 ℝcr 10898 1c1 10900 -cneg 11234 2c2 12056 ℕ0cn0 12261 ↑cexp 13810 ∗ccj 14835 arctancatan 26042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-seq 13750 df-exp 13811 df-cj 14838 df-re 14839 df-im 14840 df-atan 26045 |
This theorem is referenced by: atancj 26088 |
Copyright terms: Public domain | W3C validator |