MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvd Structured version   Visualization version   GIF version

Theorem angpieqvd 26026
Description: The angle ABC is π iff 𝐵 is a nontrivial convex combination of 𝐴 and 𝐶, i.e., iff 𝐵 is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvd.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
angpieqvd.A (𝜑𝐴 ∈ ℂ)
angpieqvd.B (𝜑𝐵 ∈ ℂ)
angpieqvd.C (𝜑𝐶 ∈ ℂ)
angpieqvd.AneB (𝜑𝐴𝐵)
angpieqvd.BneC (𝜑𝐵𝐶)
Assertion
Ref Expression
angpieqvd (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑤,𝐹   𝜑,𝑤   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem angpieqvd
StepHypRef Expression
1 angpieqvd.angdef . . . . . . 7 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 angpieqvd.A . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 angpieqvd.B . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 angpieqvd.C . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 angpieqvd.AneB . . . . . . 7 (𝜑𝐴𝐵)
6 angpieqvd.BneC . . . . . . 7 (𝜑𝐵𝐶)
71, 2, 3, 4, 5, 6angpieqvdlem2 26024 . . . . . 6 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
87biimpar 479 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
92adantr 482 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴 ∈ ℂ)
103adantr 482 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 ∈ ℂ)
114adantr 482 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶 ∈ ℂ)
125adantr 482 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐵)
131, 2, 3, 4, 5, 6angpined 26025 . . . . . . 7 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → 𝐴𝐶))
1413imp 408 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐶)
159, 10, 11, 12, 14angpieqvdlem 26023 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
168, 15mpbid 231 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
174, 3subcld 11378 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1817adantr 482 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) ∈ ℂ)
194, 2subcld 11378 . . . . . . . 8 (𝜑 → (𝐶𝐴) ∈ ℂ)
2019adantr 482 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ∈ ℂ)
2114necomd 2997 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶𝐴)
2211, 9, 21subne0d 11387 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ≠ 0)
2318, 20, 22divcan1d 11798 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)) = (𝐶𝐵))
2423eqcomd 2742 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)))
2518, 20, 22divcld 11797 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ ℂ)
269, 10, 11, 25affineequiv 26018 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)) ↔ (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴))))
2724, 26mpbird 257 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
28 oveq1 7314 . . . . . 6 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (𝑤 · 𝐴) = (((𝐶𝐵) / (𝐶𝐴)) · 𝐴))
29 oveq2 7315 . . . . . . 7 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (1 − 𝑤) = (1 − ((𝐶𝐵) / (𝐶𝐴))))
3029oveq1d 7322 . . . . . 6 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((1 − 𝑤) · 𝐶) = ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))
3128, 30oveq12d 7325 . . . . 5 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
3231rspceeqv 3580 . . . 4 ((((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ∧ 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3316, 27, 32syl2anc 585 . . 3 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3433ex 414 . 2 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
352adantr 482 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
363adantr 482 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐵 ∈ ℂ)
374adantr 482 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐶 ∈ ℂ)
38 simpr 486 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ (0(,)1))
39 elioore 13155 . . . . . 6 (𝑤 ∈ (0(,)1) → 𝑤 ∈ ℝ)
40 recn 11007 . . . . . 6 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
4138, 39, 403syl 18 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ ℂ)
4235, 36, 37, 41affineequiv 26018 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
43 simp3 1138 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) = (𝑤 · (𝐶𝐴)))
44173ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ∈ ℂ)
45413adant3 1132 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ ℂ)
46193ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ∈ ℂ)
476necomd 2997 . . . . . . . . . . . . . 14 (𝜑𝐶𝐵)
484, 3, 47subne0d 11387 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐵) ≠ 0)
49483ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ≠ 0)
5043, 49eqnetrrd 3010 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝑤 · (𝐶𝐴)) ≠ 0)
5145, 46, 50mulne0bbd 11677 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ≠ 0)
5244, 45, 46, 51divmul3d 11831 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (((𝐶𝐵) / (𝐶𝐴)) = 𝑤 ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
5343, 52mpbird 257 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) = 𝑤)
54 simp2 1137 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ (0(,)1))
5553, 54eqeltrd 2837 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
5623ad2ant1 1133 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴 ∈ ℂ)
5733ad2ant1 1133 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵 ∈ ℂ)
5843ad2ant1 1133 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶 ∈ ℂ)
5953ad2ant1 1133 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐵)
6058, 56, 51subne0ad 11389 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶𝐴)
6160necomd 2997 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐶)
6256, 57, 58, 59, 61angpieqvdlem 26023 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
6355, 62mpbird 257 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
6463ad2ant1 1133 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵𝐶)
651, 56, 57, 58, 59, 64angpieqvdlem2 26024 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6663, 65mpbid 231 . . . . 5 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π)
67663expia 1121 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → ((𝐶𝐵) = (𝑤 · (𝐶𝐴)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6842, 67sylbid 239 . . 3 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6968rexlimdva 3149 . 2 (𝜑 → (∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
7034, 69impbid 211 1 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wrex 3071  cdif 3889  {csn 4565  cfv 6458  (class class class)co 7307  cmpo 7309  cc 10915  cr 10916  0cc0 10917  1c1 10918   + caddc 10920   · cmul 10922  cmin 11251  -cneg 11252   / cdiv 11678  +crp 12776  (,)cioo 13125  cim 14854  πcpi 15821  logclog 25755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995  ax-addf 10996  ax-mulf 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-fi 9214  df-sup 9245  df-inf 9246  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-ioo 13129  df-ioc 13130  df-ico 13131  df-icc 13132  df-fz 13286  df-fzo 13429  df-fl 13558  df-mod 13636  df-seq 13768  df-exp 13829  df-fac 14034  df-bc 14063  df-hash 14091  df-shft 14823  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-limsup 15225  df-clim 15242  df-rlim 15243  df-sum 15443  df-ef 15822  df-sin 15824  df-cos 15825  df-pi 15827  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-starv 17022  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-hom 17031  df-cco 17032  df-rest 17178  df-topn 17179  df-0g 17197  df-gsum 17198  df-topgen 17199  df-pt 17200  df-prds 17203  df-xrs 17258  df-qtop 17263  df-imas 17264  df-xps 17266  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-submnd 18476  df-mulg 18746  df-cntz 18968  df-cmn 19433  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-mopn 20638  df-fbas 20639  df-fg 20640  df-cnfld 20643  df-top 22088  df-topon 22105  df-topsp 22127  df-bases 22141  df-cld 22215  df-ntr 22216  df-cls 22217  df-nei 22294  df-lp 22332  df-perf 22333  df-cn 22423  df-cnp 22424  df-haus 22511  df-tx 22758  df-hmeo 22951  df-fil 23042  df-fm 23134  df-flim 23135  df-flf 23136  df-xms 23518  df-ms 23519  df-tms 23520  df-cncf 24086  df-limc 25075  df-dv 25076  df-log 25757
This theorem is referenced by:  chordthm  26032  chordthmALT  42591
  Copyright terms: Public domain W3C validator