MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvd Structured version   Visualization version   GIF version

Theorem angpieqvd 26739
Description: The angle ABC is π iff 𝐵 is a nontrivial convex combination of 𝐴 and 𝐶, i.e., iff 𝐵 is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvd.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
angpieqvd.A (𝜑𝐴 ∈ ℂ)
angpieqvd.B (𝜑𝐵 ∈ ℂ)
angpieqvd.C (𝜑𝐶 ∈ ℂ)
angpieqvd.AneB (𝜑𝐴𝐵)
angpieqvd.BneC (𝜑𝐵𝐶)
Assertion
Ref Expression
angpieqvd (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑤,𝐹   𝜑,𝑤   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem angpieqvd
StepHypRef Expression
1 angpieqvd.angdef . . . . . . 7 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 angpieqvd.A . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 angpieqvd.B . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 angpieqvd.C . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 angpieqvd.AneB . . . . . . 7 (𝜑𝐴𝐵)
6 angpieqvd.BneC . . . . . . 7 (𝜑𝐵𝐶)
71, 2, 3, 4, 5, 6angpieqvdlem2 26737 . . . . . 6 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
87biimpar 477 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
92adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴 ∈ ℂ)
103adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 ∈ ℂ)
114adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶 ∈ ℂ)
125adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐵)
131, 2, 3, 4, 5, 6angpined 26738 . . . . . . 7 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → 𝐴𝐶))
1413imp 406 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐶)
159, 10, 11, 12, 14angpieqvdlem 26736 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
168, 15mpbid 232 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
174, 3subcld 11475 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) ∈ ℂ)
194, 2subcld 11475 . . . . . . . 8 (𝜑 → (𝐶𝐴) ∈ ℂ)
2019adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ∈ ℂ)
2114necomd 2980 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶𝐴)
2211, 9, 21subne0d 11484 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ≠ 0)
2318, 20, 22divcan1d 11901 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)) = (𝐶𝐵))
2423eqcomd 2735 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)))
2518, 20, 22divcld 11900 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ ℂ)
269, 10, 11, 25affineequiv 26731 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)) ↔ (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴))))
2724, 26mpbird 257 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
28 oveq1 7356 . . . . . 6 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (𝑤 · 𝐴) = (((𝐶𝐵) / (𝐶𝐴)) · 𝐴))
29 oveq2 7357 . . . . . . 7 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (1 − 𝑤) = (1 − ((𝐶𝐵) / (𝐶𝐴))))
3029oveq1d 7364 . . . . . 6 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((1 − 𝑤) · 𝐶) = ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))
3128, 30oveq12d 7367 . . . . 5 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
3231rspceeqv 3600 . . . 4 ((((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ∧ 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3316, 27, 32syl2anc 584 . . 3 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3433ex 412 . 2 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
352adantr 480 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
363adantr 480 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐵 ∈ ℂ)
374adantr 480 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐶 ∈ ℂ)
38 simpr 484 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ (0(,)1))
39 elioore 13278 . . . . . 6 (𝑤 ∈ (0(,)1) → 𝑤 ∈ ℝ)
40 recn 11099 . . . . . 6 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
4138, 39, 403syl 18 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ ℂ)
4235, 36, 37, 41affineequiv 26731 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
43 simp3 1138 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) = (𝑤 · (𝐶𝐴)))
44173ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ∈ ℂ)
45413adant3 1132 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ ℂ)
46193ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ∈ ℂ)
476necomd 2980 . . . . . . . . . . . . . 14 (𝜑𝐶𝐵)
484, 3, 47subne0d 11484 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐵) ≠ 0)
49483ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ≠ 0)
5043, 49eqnetrrd 2993 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝑤 · (𝐶𝐴)) ≠ 0)
5145, 46, 50mulne0bbd 11776 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ≠ 0)
5244, 45, 46, 51divmul3d 11934 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (((𝐶𝐵) / (𝐶𝐴)) = 𝑤 ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
5343, 52mpbird 257 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) = 𝑤)
54 simp2 1137 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ (0(,)1))
5553, 54eqeltrd 2828 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
5623ad2ant1 1133 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴 ∈ ℂ)
5733ad2ant1 1133 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵 ∈ ℂ)
5843ad2ant1 1133 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶 ∈ ℂ)
5953ad2ant1 1133 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐵)
6058, 56, 51subne0ad 11486 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶𝐴)
6160necomd 2980 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐶)
6256, 57, 58, 59, 61angpieqvdlem 26736 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
6355, 62mpbird 257 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
6463ad2ant1 1133 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵𝐶)
651, 56, 57, 58, 59, 64angpieqvdlem2 26737 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6663, 65mpbid 232 . . . . 5 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π)
67663expia 1121 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → ((𝐶𝐵) = (𝑤 · (𝐶𝐴)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6842, 67sylbid 240 . . 3 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6968rexlimdva 3130 . 2 (𝜑 → (∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
7034, 69impbid 212 1 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3900  {csn 4577  cfv 6482  (class class class)co 7349  cmpo 7351  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348   / cdiv 11777  +crp 12893  (,)cioo 13248  cim 15005  πcpi 15973  logclog 26461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463
This theorem is referenced by:  chordthm  26745  chordthmALT  44906
  Copyright terms: Public domain W3C validator