MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvd Structured version   Visualization version   GIF version

Theorem angpieqvd 26888
Description: The angle ABC is π iff 𝐵 is a nontrivial convex combination of 𝐴 and 𝐶, i.e., iff 𝐵 is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvd.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
angpieqvd.A (𝜑𝐴 ∈ ℂ)
angpieqvd.B (𝜑𝐵 ∈ ℂ)
angpieqvd.C (𝜑𝐶 ∈ ℂ)
angpieqvd.AneB (𝜑𝐴𝐵)
angpieqvd.BneC (𝜑𝐵𝐶)
Assertion
Ref Expression
angpieqvd (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑤,𝐹   𝜑,𝑤   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem angpieqvd
StepHypRef Expression
1 angpieqvd.angdef . . . . . . 7 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 angpieqvd.A . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 angpieqvd.B . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 angpieqvd.C . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 angpieqvd.AneB . . . . . . 7 (𝜑𝐴𝐵)
6 angpieqvd.BneC . . . . . . 7 (𝜑𝐵𝐶)
71, 2, 3, 4, 5, 6angpieqvdlem2 26886 . . . . . 6 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
87biimpar 477 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
92adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴 ∈ ℂ)
103adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 ∈ ℂ)
114adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶 ∈ ℂ)
125adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐵)
131, 2, 3, 4, 5, 6angpined 26887 . . . . . . 7 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → 𝐴𝐶))
1413imp 406 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐶)
159, 10, 11, 12, 14angpieqvdlem 26885 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
168, 15mpbid 232 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
174, 3subcld 11617 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) ∈ ℂ)
194, 2subcld 11617 . . . . . . . 8 (𝜑 → (𝐶𝐴) ∈ ℂ)
2019adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ∈ ℂ)
2114necomd 2993 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶𝐴)
2211, 9, 21subne0d 11626 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ≠ 0)
2318, 20, 22divcan1d 12041 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)) = (𝐶𝐵))
2423eqcomd 2740 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)))
2518, 20, 22divcld 12040 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ ℂ)
269, 10, 11, 25affineequiv 26880 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)) ↔ (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴))))
2724, 26mpbird 257 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
28 oveq1 7437 . . . . . 6 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (𝑤 · 𝐴) = (((𝐶𝐵) / (𝐶𝐴)) · 𝐴))
29 oveq2 7438 . . . . . . 7 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (1 − 𝑤) = (1 − ((𝐶𝐵) / (𝐶𝐴))))
3029oveq1d 7445 . . . . . 6 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((1 − 𝑤) · 𝐶) = ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))
3128, 30oveq12d 7448 . . . . 5 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
3231rspceeqv 3644 . . . 4 ((((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ∧ 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3316, 27, 32syl2anc 584 . . 3 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3433ex 412 . 2 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
352adantr 480 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
363adantr 480 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐵 ∈ ℂ)
374adantr 480 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐶 ∈ ℂ)
38 simpr 484 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ (0(,)1))
39 elioore 13413 . . . . . 6 (𝑤 ∈ (0(,)1) → 𝑤 ∈ ℝ)
40 recn 11242 . . . . . 6 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
4138, 39, 403syl 18 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ ℂ)
4235, 36, 37, 41affineequiv 26880 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
43 simp3 1137 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) = (𝑤 · (𝐶𝐴)))
44173ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ∈ ℂ)
45413adant3 1131 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ ℂ)
46193ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ∈ ℂ)
476necomd 2993 . . . . . . . . . . . . . 14 (𝜑𝐶𝐵)
484, 3, 47subne0d 11626 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐵) ≠ 0)
49483ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ≠ 0)
5043, 49eqnetrrd 3006 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝑤 · (𝐶𝐴)) ≠ 0)
5145, 46, 50mulne0bbd 11916 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ≠ 0)
5244, 45, 46, 51divmul3d 12074 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (((𝐶𝐵) / (𝐶𝐴)) = 𝑤 ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
5343, 52mpbird 257 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) = 𝑤)
54 simp2 1136 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ (0(,)1))
5553, 54eqeltrd 2838 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
5623ad2ant1 1132 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴 ∈ ℂ)
5733ad2ant1 1132 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵 ∈ ℂ)
5843ad2ant1 1132 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶 ∈ ℂ)
5953ad2ant1 1132 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐵)
6058, 56, 51subne0ad 11628 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶𝐴)
6160necomd 2993 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐶)
6256, 57, 58, 59, 61angpieqvdlem 26885 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
6355, 62mpbird 257 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
6463ad2ant1 1132 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵𝐶)
651, 56, 57, 58, 59, 64angpieqvdlem2 26886 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6663, 65mpbid 232 . . . . 5 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π)
67663expia 1120 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → ((𝐶𝐵) = (𝑤 · (𝐶𝐴)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6842, 67sylbid 240 . . 3 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6968rexlimdva 3152 . 2 (𝜑 → (∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
7034, 69impbid 212 1 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067  cdif 3959  {csn 4630  cfv 6562  (class class class)co 7430  cmpo 7432  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489  -cneg 11490   / cdiv 11917  +crp 13031  (,)cioo 13383  cim 15133  πcpi 16098  logclog 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612
This theorem is referenced by:  chordthm  26894  chordthmALT  44930
  Copyright terms: Public domain W3C validator