MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvd Structured version   Visualization version   GIF version

Theorem angpieqvd 24971
Description: The angle ABC is π iff B is a nontrivial convex combination of A and C, i.e., iff B is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvd.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
angpieqvd.A (𝜑𝐴 ∈ ℂ)
angpieqvd.B (𝜑𝐵 ∈ ℂ)
angpieqvd.C (𝜑𝐶 ∈ ℂ)
angpieqvd.AneB (𝜑𝐴𝐵)
angpieqvd.BneC (𝜑𝐵𝐶)
Assertion
Ref Expression
angpieqvd (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑤,𝐹   𝜑,𝑤   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem angpieqvd
StepHypRef Expression
1 angpieqvd.angdef . . . . . . 7 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 angpieqvd.A . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 angpieqvd.B . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 angpieqvd.C . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 angpieqvd.AneB . . . . . . 7 (𝜑𝐴𝐵)
6 angpieqvd.BneC . . . . . . 7 (𝜑𝐵𝐶)
71, 2, 3, 4, 5, 6angpieqvdlem2 24969 . . . . . 6 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
87biimpar 471 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
92adantr 474 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴 ∈ ℂ)
103adantr 474 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 ∈ ℂ)
114adantr 474 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶 ∈ ℂ)
125adantr 474 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐵)
131, 2, 3, 4, 5, 6angpined 24970 . . . . . . 7 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → 𝐴𝐶))
1413imp 397 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐶)
159, 10, 11, 12, 14angpieqvdlem 24968 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
168, 15mpbid 224 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
174, 3subcld 10713 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1817adantr 474 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) ∈ ℂ)
194, 2subcld 10713 . . . . . . . 8 (𝜑 → (𝐶𝐴) ∈ ℂ)
2019adantr 474 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ∈ ℂ)
2114necomd 3054 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶𝐴)
2211, 9, 21subne0d 10722 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ≠ 0)
2318, 20, 22divcan1d 11128 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)) = (𝐶𝐵))
2423eqcomd 2831 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)))
2518, 20, 22divcld 11127 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ ℂ)
269, 10, 11, 25affineequiv 24963 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)) ↔ (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴))))
2724, 26mpbird 249 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
28 oveq1 6912 . . . . . 6 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (𝑤 · 𝐴) = (((𝐶𝐵) / (𝐶𝐴)) · 𝐴))
29 oveq2 6913 . . . . . . 7 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (1 − 𝑤) = (1 − ((𝐶𝐵) / (𝐶𝐴))))
3029oveq1d 6920 . . . . . 6 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((1 − 𝑤) · 𝐶) = ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))
3128, 30oveq12d 6923 . . . . 5 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
3231rspceeqv 3544 . . . 4 ((((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ∧ 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3316, 27, 32syl2anc 581 . . 3 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3433ex 403 . 2 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
352adantr 474 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
363adantr 474 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐵 ∈ ℂ)
374adantr 474 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐶 ∈ ℂ)
38 simpr 479 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ (0(,)1))
39 elioore 12493 . . . . . 6 (𝑤 ∈ (0(,)1) → 𝑤 ∈ ℝ)
40 recn 10342 . . . . . 6 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
4138, 39, 403syl 18 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ ℂ)
4235, 36, 37, 41affineequiv 24963 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
43 simp3 1174 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) = (𝑤 · (𝐶𝐴)))
44173ad2ant1 1169 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ∈ ℂ)
45413adant3 1168 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ ℂ)
46193ad2ant1 1169 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ∈ ℂ)
476necomd 3054 . . . . . . . . . . . . . 14 (𝜑𝐶𝐵)
484, 3, 47subne0d 10722 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐵) ≠ 0)
49483ad2ant1 1169 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ≠ 0)
5043, 49eqnetrrd 3067 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝑤 · (𝐶𝐴)) ≠ 0)
5145, 46, 50mulne0bbd 11008 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ≠ 0)
5244, 45, 46, 51divmul3d 11161 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (((𝐶𝐵) / (𝐶𝐴)) = 𝑤 ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
5343, 52mpbird 249 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) = 𝑤)
54 simp2 1173 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ (0(,)1))
5553, 54eqeltrd 2906 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
5623ad2ant1 1169 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴 ∈ ℂ)
5733ad2ant1 1169 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵 ∈ ℂ)
5843ad2ant1 1169 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶 ∈ ℂ)
5953ad2ant1 1169 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐵)
6058, 56, 51subne0ad 10724 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶𝐴)
6160necomd 3054 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐶)
6256, 57, 58, 59, 61angpieqvdlem 24968 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
6355, 62mpbird 249 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
6463ad2ant1 1169 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵𝐶)
651, 56, 57, 58, 59, 64angpieqvdlem2 24969 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6663, 65mpbid 224 . . . . 5 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π)
67663expia 1156 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → ((𝐶𝐵) = (𝑤 · (𝐶𝐴)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6842, 67sylbid 232 . . 3 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6968rexlimdva 3240 . 2 (𝜑 → (∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
7034, 69impbid 204 1 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2999  wrex 3118  cdif 3795  {csn 4397  cfv 6123  (class class class)co 6905  cmpt2 6907  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  cmin 10585  -cneg 10586   / cdiv 11009  +crp 12112  (,)cioo 12463  cim 14215  πcpi 15169  logclog 24700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030  df-log 24702
This theorem is referenced by:  chordthm  24977  chordthmALT  39987
  Copyright terms: Public domain W3C validator