MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1 Structured version   Visualization version   GIF version

Theorem vieta1 26277
Description: The first-order Vieta's formula (see http://en.wikipedia.org/wiki/Vieta%27s_formulas). If a polynomial of degree 𝑁 has 𝑁 distinct roots, then the sum over these roots can be calculated as -𝐴(𝑁 − 1) / 𝐴(𝑁). (If the roots are not distinct, then this formula is still true but must double-count some of the roots according to their multiplicities.) (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1.6 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
vieta1 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem vieta1
Dummy variables 𝑓 𝑘 𝑦 𝑧 𝑑 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vieta1.5 . 2 (𝜑 → (♯‘𝑅) = 𝑁)
2 fveq2 6881 . . . . . . 7 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
32eqeq2d 2747 . . . . . 6 (𝑓 = 𝐹 → (𝑁 = (deg‘𝑓) ↔ 𝑁 = (deg‘𝐹)))
4 cnveq 5858 . . . . . . . . . 10 (𝑓 = 𝐹𝑓 = 𝐹)
54imaeq1d 6051 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 “ {0}) = (𝐹 “ {0}))
6 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
75, 6eqtr4di 2789 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 “ {0}) = 𝑅)
87fveq2d 6885 . . . . . . 7 (𝑓 = 𝐹 → (♯‘(𝑓 “ {0})) = (♯‘𝑅))
9 vieta1.2 . . . . . . . 8 𝑁 = (deg‘𝐹)
102, 9eqtr4di 2789 . . . . . . 7 (𝑓 = 𝐹 → (deg‘𝑓) = 𝑁)
118, 10eqeq12d 2752 . . . . . 6 (𝑓 = 𝐹 → ((♯‘(𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘𝑅) = 𝑁))
123, 11anbi12d 632 . . . . 5 (𝑓 = 𝐹 → ((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑁 = (deg‘𝐹) ∧ (♯‘𝑅) = 𝑁)))
139biantrur 530 . . . . 5 ((♯‘𝑅) = 𝑁 ↔ (𝑁 = (deg‘𝐹) ∧ (♯‘𝑅) = 𝑁))
1412, 13bitr4di 289 . . . 4 (𝑓 = 𝐹 → ((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (♯‘𝑅) = 𝑁))
157sumeq1d 15721 . . . . 5 (𝑓 = 𝐹 → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = Σ𝑥𝑅 𝑥)
16 fveq2 6881 . . . . . . . . 9 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
17 vieta1.1 . . . . . . . . 9 𝐴 = (coeff‘𝐹)
1816, 17eqtr4di 2789 . . . . . . . 8 (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴)
1910oveq1d 7425 . . . . . . . 8 (𝑓 = 𝐹 → ((deg‘𝑓) − 1) = (𝑁 − 1))
2018, 19fveq12d 6888 . . . . . . 7 (𝑓 = 𝐹 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = (𝐴‘(𝑁 − 1)))
2118, 10fveq12d 6888 . . . . . . 7 (𝑓 = 𝐹 → ((coeff‘𝑓)‘(deg‘𝑓)) = (𝐴𝑁))
2220, 21oveq12d 7428 . . . . . 6 (𝑓 = 𝐹 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
2322negeqd 11481 . . . . 5 (𝑓 = 𝐹 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
2415, 23eqeq12d 2752 . . . 4 (𝑓 = 𝐹 → (Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁))))
2514, 24imbi12d 344 . . 3 (𝑓 = 𝐹 → (((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((♯‘𝑅) = 𝑁 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))))
26 vieta1.6 . . . 4 (𝜑𝑁 ∈ ℕ)
27 eqeq1 2740 . . . . . . . 8 (𝑦 = 1 → (𝑦 = (deg‘𝑓) ↔ 1 = (deg‘𝑓)))
2827anbi1d 631 . . . . . . 7 (𝑦 = 1 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
2928imbi1d 341 . . . . . 6 (𝑦 = 1 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
3029ralbidv 3164 . . . . 5 (𝑦 = 1 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
31 eqeq1 2740 . . . . . . . 8 (𝑦 = 𝑑 → (𝑦 = (deg‘𝑓) ↔ 𝑑 = (deg‘𝑓)))
3231anbi1d 631 . . . . . . 7 (𝑦 = 𝑑 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
3332imbi1d 341 . . . . . 6 (𝑦 = 𝑑 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
3433ralbidv 3164 . . . . 5 (𝑦 = 𝑑 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
35 eqeq1 2740 . . . . . . . 8 (𝑦 = (𝑑 + 1) → (𝑦 = (deg‘𝑓) ↔ (𝑑 + 1) = (deg‘𝑓)))
3635anbi1d 631 . . . . . . 7 (𝑦 = (𝑑 + 1) → ((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ ((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
3736imbi1d 341 . . . . . 6 (𝑦 = (𝑑 + 1) → (((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ (((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
3837ralbidv 3164 . . . . 5 (𝑦 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
39 eqeq1 2740 . . . . . . . 8 (𝑦 = 𝑁 → (𝑦 = (deg‘𝑓) ↔ 𝑁 = (deg‘𝑓)))
4039anbi1d 631 . . . . . . 7 (𝑦 = 𝑁 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
4140imbi1d 341 . . . . . 6 (𝑦 = 𝑁 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
4241ralbidv 3164 . . . . 5 (𝑦 = 𝑁 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
43 eqid 2736 . . . . . . . . . . . . . . 15 (coeff‘𝑓) = (coeff‘𝑓)
4443coef3 26194 . . . . . . . . . . . . . 14 (𝑓 ∈ (Poly‘ℂ) → (coeff‘𝑓):ℕ0⟶ℂ)
4544adantr 480 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (coeff‘𝑓):ℕ0⟶ℂ)
46 0nn0 12521 . . . . . . . . . . . . 13 0 ∈ ℕ0
47 ffvelcdm 7076 . . . . . . . . . . . . 13 (((coeff‘𝑓):ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → ((coeff‘𝑓)‘0) ∈ ℂ)
4845, 46, 47sylancl 586 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘0) ∈ ℂ)
49 1nn0 12522 . . . . . . . . . . . . 13 1 ∈ ℕ0
50 ffvelcdm 7076 . . . . . . . . . . . . 13 (((coeff‘𝑓):ℕ0⟶ℂ ∧ 1 ∈ ℕ0) → ((coeff‘𝑓)‘1) ∈ ℂ)
5145, 49, 50sylancl 586 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘1) ∈ ℂ)
52 simpr 484 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 1 = (deg‘𝑓))
5352fveq2d 6885 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘1) = ((coeff‘𝑓)‘(deg‘𝑓)))
54 ax-1ne0 11203 . . . . . . . . . . . . . . . . 17 1 ≠ 0
5554a1i 11 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 1 ≠ 0)
5652, 55eqnetrrd 3001 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (deg‘𝑓) ≠ 0)
57 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑓 = 0𝑝 → (deg‘𝑓) = (deg‘0𝑝))
58 dgr0 26225 . . . . . . . . . . . . . . . . 17 (deg‘0𝑝) = 0
5957, 58eqtrdi 2787 . . . . . . . . . . . . . . . 16 (𝑓 = 0𝑝 → (deg‘𝑓) = 0)
6059necon3i 2965 . . . . . . . . . . . . . . 15 ((deg‘𝑓) ≠ 0 → 𝑓 ≠ 0𝑝)
6156, 60syl 17 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 𝑓 ≠ 0𝑝)
62 eqid 2736 . . . . . . . . . . . . . . . . 17 (deg‘𝑓) = (deg‘𝑓)
6362, 43dgreq0 26228 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (Poly‘ℂ) → (𝑓 = 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0))
6463necon3bid 2977 . . . . . . . . . . . . . . 15 (𝑓 ∈ (Poly‘ℂ) → (𝑓 ≠ 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0))
6564adantr 480 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (𝑓 ≠ 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0))
6661, 65mpbid 232 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)
6753, 66eqnetrd 3000 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘1) ≠ 0)
6848, 51, 67divcld 12022 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ)
6968negcld 11586 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ)
70 id 22 . . . . . . . . . . 11 (𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) → 𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
7170sumsn 15767 . . . . . . . . . 10 ((-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) → Σ𝑥 ∈ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
7269, 69, 71syl2anc 584 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑥 ∈ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
7372adantrr 717 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → Σ𝑥 ∈ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
74 eqid 2736 . . . . . . . . . . . . . 14 (𝑓 “ {0}) = (𝑓 “ {0})
7574fta1 26273 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 𝑓 ≠ 0𝑝) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))
7661, 75syldan 591 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))
7776simpld 494 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (𝑓 “ {0}) ∈ Fin)
7877adantrr 717 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → (𝑓 “ {0}) ∈ Fin)
7943, 62coeid2 26201 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (Poly‘ℂ) ∧ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) → (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)))
8069, 79syldan 591 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)))
8152oveq2d 7426 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (0...1) = (0...(deg‘𝑓)))
8281sumeq1d 15721 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑘 ∈ (0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)))
83 nn0uz 12899 . . . . . . . . . . . . . . . 16 0 = (ℤ‘0)
84 1e0p1 12755 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
85 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((coeff‘𝑓)‘𝑘) = ((coeff‘𝑓)‘1))
86 oveq2 7418 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) = (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))
8785, 86oveq12d 7428 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)))
8845ffvelcdmda 7079 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝑓)‘𝑘) ∈ ℂ)
89 expcl 14102 . . . . . . . . . . . . . . . . . 18 ((-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) ∈ ℂ)
9069, 89sylan 580 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) ∧ 𝑘 ∈ ℕ0) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) ∈ ℂ)
9188, 90mulcld 11260 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) ∧ 𝑘 ∈ ℕ0) → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) ∈ ℂ)
92 0z 12604 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
9369exp0d 14163 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0) = 1)
9493oveq2d 7426 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) = (((coeff‘𝑓)‘0) · 1))
9548mulridd 11257 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) · 1) = ((coeff‘𝑓)‘0))
9694, 95eqtrd 2771 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) = ((coeff‘𝑓)‘0))
9796, 48eqeltrd 2835 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) ∈ ℂ)
98 fveq2 6881 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 0 → ((coeff‘𝑓)‘𝑘) = ((coeff‘𝑓)‘0))
99 oveq2 7418 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 0 → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) = (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0))
10098, 99oveq12d 7428 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 0 → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)))
101100fsum1 15768 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℤ ∧ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)))
10292, 97, 101sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)))
103102, 96eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = ((coeff‘𝑓)‘0))
104103, 46jctil 519 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = ((coeff‘𝑓)‘0)))
10569exp1d 14164 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1) = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
106105oveq2d 7426 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) = (((coeff‘𝑓)‘1) · -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))))
10751, 68mulneg2d 11696 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘1) · -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = -(((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))))
10848, 51, 67divcan2d 12024 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = ((coeff‘𝑓)‘0))
109108negeqd 11481 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → -(((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = -((coeff‘𝑓)‘0))
110106, 107, 1093eqtrd 2775 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) = -((coeff‘𝑓)‘0))
111110oveq2d 7426 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) + (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) = (((coeff‘𝑓)‘0) + -((coeff‘𝑓)‘0)))
11248negidd 11589 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) + -((coeff‘𝑓)‘0)) = 0)
113111, 112eqtrd 2771 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) + (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) = 0)
11483, 84, 87, 91, 104, 113fsump1i 15790 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = 0))
115114simprd 495 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑘 ∈ (0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = 0)
11680, 82, 1153eqtr2d 2777 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0)
117 plyf 26160 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (Poly‘ℂ) → 𝑓:ℂ⟶ℂ)
118117ffnd 6712 . . . . . . . . . . . . . . 15 (𝑓 ∈ (Poly‘ℂ) → 𝑓 Fn ℂ)
119118adantr 480 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 𝑓 Fn ℂ)
120 fniniseg 7055 . . . . . . . . . . . . . 14 (𝑓 Fn ℂ → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (𝑓 “ {0}) ↔ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0)))
121119, 120syl 17 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (𝑓 “ {0}) ↔ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0)))
12269, 116, 121mpbir2and 713 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (𝑓 “ {0}))
123122snssd 4790 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (𝑓 “ {0}))
124123adantrr 717 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (𝑓 “ {0}))
125 hashsng 14392 . . . . . . . . . . . . . . 15 (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = 1)
12669, 125syl 17 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = 1)
127126, 52eqtrd 2771 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (deg‘𝑓))
128127adantrr 717 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (deg‘𝑓))
129 simprr 772 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → (♯‘(𝑓 “ {0})) = (deg‘𝑓))
130128, 129eqtr4d 2774 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(𝑓 “ {0})))
131 snfi 9062 . . . . . . . . . . . . 13 {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ∈ Fin
132 hashen 14370 . . . . . . . . . . . . 13 (({-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ∈ Fin ∧ (𝑓 “ {0}) ∈ Fin) → ((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0})))
133131, 77, 132sylancr 587 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0})))
134133adantrr 717 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → ((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0})))
135130, 134mpbid 232 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0}))
136 fisseneq 9270 . . . . . . . . . 10 (((𝑓 “ {0}) ∈ Fin ∧ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (𝑓 “ {0}) ∧ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0})) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} = (𝑓 “ {0}))
13778, 124, 135, 136syl3anc 1373 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} = (𝑓 “ {0}))
138137sumeq1d 15721 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → Σ𝑥 ∈ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = Σ𝑥 ∈ (𝑓 “ {0})𝑥)
139 1m1e0 12317 . . . . . . . . . . . . 13 (1 − 1) = 0
14052oveq1d 7425 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (1 − 1) = ((deg‘𝑓) − 1))
141139, 140eqtr3id 2785 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 0 = ((deg‘𝑓) − 1))
142141fveq2d 6885 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘0) = ((coeff‘𝑓)‘((deg‘𝑓) − 1)))
143142, 53oveq12d 7428 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
144143negeqd 11481 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
145144adantrr 717 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
14673, 138, 1453eqtr3d 2779 . . . . . . 7 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
147146ex 412 . . . . . 6 (𝑓 ∈ (Poly‘ℂ) → ((1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
148147rgen 3054 . . . . 5 𝑓 ∈ (Poly‘ℂ)((1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
149 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑥𝑦 = 𝑥)
150149cbvsumv 15717 . . . . . . . . . . 11 Σ𝑦 ∈ (𝑓 “ {0})𝑦 = Σ𝑥 ∈ (𝑓 “ {0})𝑥
151150eqeq1i 2741 . . . . . . . . . 10 𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
152151imbi2i 336 . . . . . . . . 9 (((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
153152ralbii 3083 . . . . . . . 8 (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
154 eqid 2736 . . . . . . . . . 10 (coeff‘𝑔) = (coeff‘𝑔)
155 eqid 2736 . . . . . . . . . 10 (deg‘𝑔) = (deg‘𝑔)
156 eqid 2736 . . . . . . . . . 10 (𝑔 “ {0}) = (𝑔 “ {0})
157 simp1r 1199 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → 𝑔 ∈ (Poly‘ℂ))
158 simp3r 1203 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → (♯‘(𝑔 “ {0})) = (deg‘𝑔))
159 simp1l 1198 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → 𝑑 ∈ ℕ)
160 simp3l 1202 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → (𝑑 + 1) = (deg‘𝑔))
161 simp2 1137 . . . . . . . . . . 11 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
162161, 153sylib 218 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
163 eqid 2736 . . . . . . . . . 10 (𝑔 quot (Xpf − (ℂ × {𝑧}))) = (𝑔 quot (Xpf − (ℂ × {𝑧})))
164154, 155, 156, 157, 158, 159, 160, 162, 163vieta1lem2 26276 . . . . . . . . 9 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))))
1651643exp 1119 . . . . . . . 8 ((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) → (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))))))
166153, 165biimtrrid 243 . . . . . . 7 ((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) → (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))))))
167166ralrimdva 3141 . . . . . 6 (𝑑 ∈ ℕ → (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → ∀𝑔 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))))))
168 fveq2 6881 . . . . . . . . . 10 (𝑔 = 𝑓 → (deg‘𝑔) = (deg‘𝑓))
169168eqeq2d 2747 . . . . . . . . 9 (𝑔 = 𝑓 → ((𝑑 + 1) = (deg‘𝑔) ↔ (𝑑 + 1) = (deg‘𝑓)))
170 cnveq 5858 . . . . . . . . . . . 12 (𝑔 = 𝑓𝑔 = 𝑓)
171170imaeq1d 6051 . . . . . . . . . . 11 (𝑔 = 𝑓 → (𝑔 “ {0}) = (𝑓 “ {0}))
172171fveq2d 6885 . . . . . . . . . 10 (𝑔 = 𝑓 → (♯‘(𝑔 “ {0})) = (♯‘(𝑓 “ {0})))
173172, 168eqeq12d 2752 . . . . . . . . 9 (𝑔 = 𝑓 → ((♯‘(𝑔 “ {0})) = (deg‘𝑔) ↔ (♯‘(𝑓 “ {0})) = (deg‘𝑓)))
174169, 173anbi12d 632 . . . . . . . 8 (𝑔 = 𝑓 → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) ↔ ((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
175171sumeq1d 15721 . . . . . . . . 9 (𝑔 = 𝑓 → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = Σ𝑥 ∈ (𝑓 “ {0})𝑥)
176 fveq2 6881 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (coeff‘𝑔) = (coeff‘𝑓))
177168oveq1d 7425 . . . . . . . . . . . 12 (𝑔 = 𝑓 → ((deg‘𝑔) − 1) = ((deg‘𝑓) − 1))
178176, 177fveq12d 6888 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((coeff‘𝑔)‘((deg‘𝑔) − 1)) = ((coeff‘𝑓)‘((deg‘𝑓) − 1)))
179176, 168fveq12d 6888 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((coeff‘𝑔)‘(deg‘𝑔)) = ((coeff‘𝑓)‘(deg‘𝑓)))
180178, 179oveq12d 7428 . . . . . . . . . 10 (𝑔 = 𝑓 → (((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) = (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
181180negeqd 11481 . . . . . . . . 9 (𝑔 = 𝑓 → -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
182175, 181eqeq12d 2752 . . . . . . . 8 (𝑔 = 𝑓 → (Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) ↔ Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
183174, 182imbi12d 344 . . . . . . 7 (𝑔 = 𝑓 → ((((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) ↔ (((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
184183cbvralvw 3224 . . . . . 6 (∀𝑔 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
185167, 184imbitrdi 251 . . . . 5 (𝑑 ∈ ℕ → (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → ∀𝑓 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
18630, 34, 38, 42, 148, 185nnind 12263 . . . 4 (𝑁 ∈ ℕ → ∀𝑓 ∈ (Poly‘ℂ)((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
18726, 186syl 17 . . 3 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
188 plyssc 26162 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
189 vieta1.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
190188, 189sselid 3961 . . 3 (𝜑𝐹 ∈ (Poly‘ℂ))
19125, 187, 190rspcdva 3607 . 2 (𝜑 → ((♯‘𝑅) = 𝑁 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁))))
1921, 191mpd 15 1 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wss 3931  {csn 4606   class class class wbr 5124   × cxp 5657  ccnv 5658  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  cen 8961  Fincfn 8964  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  ...cfz 13529  cexp 14084  chash 14353  Σcsu 15707  0𝑝c0p 25627  Polycply 26146  Xpcidp 26147  coeffccoe 26148  degcdgr 26149   quot cquot 26255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-idp 26151  df-coe 26152  df-dgr 26153  df-quot 26256
This theorem is referenced by:  basellem5  27052
  Copyright terms: Public domain W3C validator