MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1 Structured version   Visualization version   GIF version

Theorem vieta1 26227
Description: The first-order Vieta's formula (see http://en.wikipedia.org/wiki/Vieta%27s_formulas). If a polynomial of degree 𝑁 has 𝑁 distinct roots, then the sum over these roots can be calculated as -𝐴(𝑁 − 1) / 𝐴(𝑁). (If the roots are not distinct, then this formula is still true but must double-count some of the roots according to their multiplicities.) (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1.6 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
vieta1 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem vieta1
Dummy variables 𝑓 𝑘 𝑦 𝑧 𝑑 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vieta1.5 . 2 (𝜑 → (♯‘𝑅) = 𝑁)
2 fveq2 6861 . . . . . . 7 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
32eqeq2d 2741 . . . . . 6 (𝑓 = 𝐹 → (𝑁 = (deg‘𝑓) ↔ 𝑁 = (deg‘𝐹)))
4 cnveq 5840 . . . . . . . . . 10 (𝑓 = 𝐹𝑓 = 𝐹)
54imaeq1d 6033 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 “ {0}) = (𝐹 “ {0}))
6 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
75, 6eqtr4di 2783 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 “ {0}) = 𝑅)
87fveq2d 6865 . . . . . . 7 (𝑓 = 𝐹 → (♯‘(𝑓 “ {0})) = (♯‘𝑅))
9 vieta1.2 . . . . . . . 8 𝑁 = (deg‘𝐹)
102, 9eqtr4di 2783 . . . . . . 7 (𝑓 = 𝐹 → (deg‘𝑓) = 𝑁)
118, 10eqeq12d 2746 . . . . . 6 (𝑓 = 𝐹 → ((♯‘(𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘𝑅) = 𝑁))
123, 11anbi12d 632 . . . . 5 (𝑓 = 𝐹 → ((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑁 = (deg‘𝐹) ∧ (♯‘𝑅) = 𝑁)))
139biantrur 530 . . . . 5 ((♯‘𝑅) = 𝑁 ↔ (𝑁 = (deg‘𝐹) ∧ (♯‘𝑅) = 𝑁))
1412, 13bitr4di 289 . . . 4 (𝑓 = 𝐹 → ((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (♯‘𝑅) = 𝑁))
157sumeq1d 15673 . . . . 5 (𝑓 = 𝐹 → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = Σ𝑥𝑅 𝑥)
16 fveq2 6861 . . . . . . . . 9 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
17 vieta1.1 . . . . . . . . 9 𝐴 = (coeff‘𝐹)
1816, 17eqtr4di 2783 . . . . . . . 8 (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴)
1910oveq1d 7405 . . . . . . . 8 (𝑓 = 𝐹 → ((deg‘𝑓) − 1) = (𝑁 − 1))
2018, 19fveq12d 6868 . . . . . . 7 (𝑓 = 𝐹 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = (𝐴‘(𝑁 − 1)))
2118, 10fveq12d 6868 . . . . . . 7 (𝑓 = 𝐹 → ((coeff‘𝑓)‘(deg‘𝑓)) = (𝐴𝑁))
2220, 21oveq12d 7408 . . . . . 6 (𝑓 = 𝐹 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
2322negeqd 11422 . . . . 5 (𝑓 = 𝐹 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
2415, 23eqeq12d 2746 . . . 4 (𝑓 = 𝐹 → (Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁))))
2514, 24imbi12d 344 . . 3 (𝑓 = 𝐹 → (((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((♯‘𝑅) = 𝑁 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))))
26 vieta1.6 . . . 4 (𝜑𝑁 ∈ ℕ)
27 eqeq1 2734 . . . . . . . 8 (𝑦 = 1 → (𝑦 = (deg‘𝑓) ↔ 1 = (deg‘𝑓)))
2827anbi1d 631 . . . . . . 7 (𝑦 = 1 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
2928imbi1d 341 . . . . . 6 (𝑦 = 1 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
3029ralbidv 3157 . . . . 5 (𝑦 = 1 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
31 eqeq1 2734 . . . . . . . 8 (𝑦 = 𝑑 → (𝑦 = (deg‘𝑓) ↔ 𝑑 = (deg‘𝑓)))
3231anbi1d 631 . . . . . . 7 (𝑦 = 𝑑 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
3332imbi1d 341 . . . . . 6 (𝑦 = 𝑑 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
3433ralbidv 3157 . . . . 5 (𝑦 = 𝑑 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
35 eqeq1 2734 . . . . . . . 8 (𝑦 = (𝑑 + 1) → (𝑦 = (deg‘𝑓) ↔ (𝑑 + 1) = (deg‘𝑓)))
3635anbi1d 631 . . . . . . 7 (𝑦 = (𝑑 + 1) → ((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ ((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
3736imbi1d 341 . . . . . 6 (𝑦 = (𝑑 + 1) → (((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ (((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
3837ralbidv 3157 . . . . 5 (𝑦 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
39 eqeq1 2734 . . . . . . . 8 (𝑦 = 𝑁 → (𝑦 = (deg‘𝑓) ↔ 𝑁 = (deg‘𝑓)))
4039anbi1d 631 . . . . . . 7 (𝑦 = 𝑁 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
4140imbi1d 341 . . . . . 6 (𝑦 = 𝑁 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
4241ralbidv 3157 . . . . 5 (𝑦 = 𝑁 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
43 eqid 2730 . . . . . . . . . . . . . . 15 (coeff‘𝑓) = (coeff‘𝑓)
4443coef3 26144 . . . . . . . . . . . . . 14 (𝑓 ∈ (Poly‘ℂ) → (coeff‘𝑓):ℕ0⟶ℂ)
4544adantr 480 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (coeff‘𝑓):ℕ0⟶ℂ)
46 0nn0 12464 . . . . . . . . . . . . 13 0 ∈ ℕ0
47 ffvelcdm 7056 . . . . . . . . . . . . 13 (((coeff‘𝑓):ℕ0⟶ℂ ∧ 0 ∈ ℕ0) → ((coeff‘𝑓)‘0) ∈ ℂ)
4845, 46, 47sylancl 586 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘0) ∈ ℂ)
49 1nn0 12465 . . . . . . . . . . . . 13 1 ∈ ℕ0
50 ffvelcdm 7056 . . . . . . . . . . . . 13 (((coeff‘𝑓):ℕ0⟶ℂ ∧ 1 ∈ ℕ0) → ((coeff‘𝑓)‘1) ∈ ℂ)
5145, 49, 50sylancl 586 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘1) ∈ ℂ)
52 simpr 484 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 1 = (deg‘𝑓))
5352fveq2d 6865 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘1) = ((coeff‘𝑓)‘(deg‘𝑓)))
54 ax-1ne0 11144 . . . . . . . . . . . . . . . . 17 1 ≠ 0
5554a1i 11 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 1 ≠ 0)
5652, 55eqnetrrd 2994 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (deg‘𝑓) ≠ 0)
57 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑓 = 0𝑝 → (deg‘𝑓) = (deg‘0𝑝))
58 dgr0 26175 . . . . . . . . . . . . . . . . 17 (deg‘0𝑝) = 0
5957, 58eqtrdi 2781 . . . . . . . . . . . . . . . 16 (𝑓 = 0𝑝 → (deg‘𝑓) = 0)
6059necon3i 2958 . . . . . . . . . . . . . . 15 ((deg‘𝑓) ≠ 0 → 𝑓 ≠ 0𝑝)
6156, 60syl 17 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 𝑓 ≠ 0𝑝)
62 eqid 2730 . . . . . . . . . . . . . . . . 17 (deg‘𝑓) = (deg‘𝑓)
6362, 43dgreq0 26178 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (Poly‘ℂ) → (𝑓 = 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0))
6463necon3bid 2970 . . . . . . . . . . . . . . 15 (𝑓 ∈ (Poly‘ℂ) → (𝑓 ≠ 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0))
6564adantr 480 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (𝑓 ≠ 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0))
6661, 65mpbid 232 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)
6753, 66eqnetrd 2993 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘1) ≠ 0)
6848, 51, 67divcld 11965 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ)
6968negcld 11527 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ)
70 id 22 . . . . . . . . . . 11 (𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) → 𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
7170sumsn 15719 . . . . . . . . . 10 ((-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) → Σ𝑥 ∈ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
7269, 69, 71syl2anc 584 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑥 ∈ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
7372adantrr 717 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → Σ𝑥 ∈ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
74 eqid 2730 . . . . . . . . . . . . . 14 (𝑓 “ {0}) = (𝑓 “ {0})
7574fta1 26223 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 𝑓 ≠ 0𝑝) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))
7661, 75syldan 591 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))
7776simpld 494 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (𝑓 “ {0}) ∈ Fin)
7877adantrr 717 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → (𝑓 “ {0}) ∈ Fin)
7943, 62coeid2 26151 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (Poly‘ℂ) ∧ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) → (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)))
8069, 79syldan 591 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)))
8152oveq2d 7406 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (0...1) = (0...(deg‘𝑓)))
8281sumeq1d 15673 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑘 ∈ (0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)))
83 nn0uz 12842 . . . . . . . . . . . . . . . 16 0 = (ℤ‘0)
84 1e0p1 12698 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
85 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((coeff‘𝑓)‘𝑘) = ((coeff‘𝑓)‘1))
86 oveq2 7398 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) = (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))
8785, 86oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)))
8845ffvelcdmda 7059 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝑓)‘𝑘) ∈ ℂ)
89 expcl 14051 . . . . . . . . . . . . . . . . . 18 ((-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) ∈ ℂ)
9069, 89sylan 580 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) ∧ 𝑘 ∈ ℕ0) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) ∈ ℂ)
9188, 90mulcld 11201 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) ∧ 𝑘 ∈ ℕ0) → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) ∈ ℂ)
92 0z 12547 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
9369exp0d 14112 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0) = 1)
9493oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) = (((coeff‘𝑓)‘0) · 1))
9548mulridd 11198 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) · 1) = ((coeff‘𝑓)‘0))
9694, 95eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) = ((coeff‘𝑓)‘0))
9796, 48eqeltrd 2829 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) ∈ ℂ)
98 fveq2 6861 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 0 → ((coeff‘𝑓)‘𝑘) = ((coeff‘𝑓)‘0))
99 oveq2 7398 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 0 → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) = (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0))
10098, 99oveq12d 7408 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 0 → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)))
101100fsum1 15720 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℤ ∧ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)))
10292, 97, 101sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)))
103102, 96eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = ((coeff‘𝑓)‘0))
104103, 46jctil 519 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = ((coeff‘𝑓)‘0)))
10569exp1d 14113 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1) = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))
106105oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) = (((coeff‘𝑓)‘1) · -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))))
10751, 68mulneg2d 11639 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘1) · -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = -(((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))))
10848, 51, 67divcan2d 11967 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = ((coeff‘𝑓)‘0))
109108negeqd 11422 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → -(((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = -((coeff‘𝑓)‘0))
110106, 107, 1093eqtrd 2769 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) = -((coeff‘𝑓)‘0))
111110oveq2d 7406 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) + (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) = (((coeff‘𝑓)‘0) + -((coeff‘𝑓)‘0)))
11248negidd 11530 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) + -((coeff‘𝑓)‘0)) = 0)
113111, 112eqtrd 2765 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) + (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) = 0)
11483, 84, 87, 91, 104, 113fsump1i 15742 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = 0))
115114simprd 495 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → Σ𝑘 ∈ (0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = 0)
11680, 82, 1153eqtr2d 2771 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0)
117 plyf 26110 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (Poly‘ℂ) → 𝑓:ℂ⟶ℂ)
118117ffnd 6692 . . . . . . . . . . . . . . 15 (𝑓 ∈ (Poly‘ℂ) → 𝑓 Fn ℂ)
119118adantr 480 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 𝑓 Fn ℂ)
120 fniniseg 7035 . . . . . . . . . . . . . 14 (𝑓 Fn ℂ → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (𝑓 “ {0}) ↔ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0)))
121119, 120syl 17 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (𝑓 “ {0}) ↔ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0)))
12269, 116, 121mpbir2and 713 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (𝑓 “ {0}))
123122snssd 4776 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (𝑓 “ {0}))
124123adantrr 717 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (𝑓 “ {0}))
125 hashsng 14341 . . . . . . . . . . . . . . 15 (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = 1)
12669, 125syl 17 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = 1)
127126, 52eqtrd 2765 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (deg‘𝑓))
128127adantrr 717 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (deg‘𝑓))
129 simprr 772 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → (♯‘(𝑓 “ {0})) = (deg‘𝑓))
130128, 129eqtr4d 2768 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(𝑓 “ {0})))
131 snfi 9017 . . . . . . . . . . . . 13 {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ∈ Fin
132 hashen 14319 . . . . . . . . . . . . 13 (({-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ∈ Fin ∧ (𝑓 “ {0}) ∈ Fin) → ((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0})))
133131, 77, 132sylancr 587 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0})))
134133adantrr 717 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → ((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0})))
135130, 134mpbid 232 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0}))
136 fisseneq 9211 . . . . . . . . . 10 (((𝑓 “ {0}) ∈ Fin ∧ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (𝑓 “ {0}) ∧ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (𝑓 “ {0})) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} = (𝑓 “ {0}))
13778, 124, 135, 136syl3anc 1373 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} = (𝑓 “ {0}))
138137sumeq1d 15673 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → Σ𝑥 ∈ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = Σ𝑥 ∈ (𝑓 “ {0})𝑥)
139 1m1e0 12265 . . . . . . . . . . . . 13 (1 − 1) = 0
14052oveq1d 7405 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (1 − 1) = ((deg‘𝑓) − 1))
141139, 140eqtr3id 2779 . . . . . . . . . . . 12 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → 0 = ((deg‘𝑓) − 1))
142141fveq2d 6865 . . . . . . . . . . 11 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → ((coeff‘𝑓)‘0) = ((coeff‘𝑓)‘((deg‘𝑓) − 1)))
143142, 53oveq12d 7408 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
144143negeqd 11422 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℂ) ∧ 1 = (deg‘𝑓)) → -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
145144adantrr 717 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
14673, 138, 1453eqtr3d 2773 . . . . . . 7 ((𝑓 ∈ (Poly‘ℂ) ∧ (1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
147146ex 412 . . . . . 6 (𝑓 ∈ (Poly‘ℂ) → ((1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
148147rgen 3047 . . . . 5 𝑓 ∈ (Poly‘ℂ)((1 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
149 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑥𝑦 = 𝑥)
150149cbvsumv 15669 . . . . . . . . . . 11 Σ𝑦 ∈ (𝑓 “ {0})𝑦 = Σ𝑥 ∈ (𝑓 “ {0})𝑥
151150eqeq1i 2735 . . . . . . . . . 10 𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
152151imbi2i 336 . . . . . . . . 9 (((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
153152ralbii 3076 . . . . . . . 8 (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
154 eqid 2730 . . . . . . . . . 10 (coeff‘𝑔) = (coeff‘𝑔)
155 eqid 2730 . . . . . . . . . 10 (deg‘𝑔) = (deg‘𝑔)
156 eqid 2730 . . . . . . . . . 10 (𝑔 “ {0}) = (𝑔 “ {0})
157 simp1r 1199 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → 𝑔 ∈ (Poly‘ℂ))
158 simp3r 1203 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → (♯‘(𝑔 “ {0})) = (deg‘𝑔))
159 simp1l 1198 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → 𝑑 ∈ ℕ)
160 simp3l 1202 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → (𝑑 + 1) = (deg‘𝑔))
161 simp2 1137 . . . . . . . . . . 11 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
162161, 153sylib 218 . . . . . . . . . 10 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
163 eqid 2730 . . . . . . . . . 10 (𝑔 quot (Xpf − (ℂ × {𝑧}))) = (𝑔 quot (Xpf − (ℂ × {𝑧})))
164154, 155, 156, 157, 158, 159, 160, 162, 163vieta1lem2 26226 . . . . . . . . 9 (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) ∧ ∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔))) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))))
1651643exp 1119 . . . . . . . 8 ((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) → (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))))))
166153, 165biimtrrid 243 . . . . . . 7 ((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ)) → (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))))))
167166ralrimdva 3134 . . . . . 6 (𝑑 ∈ ℕ → (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → ∀𝑔 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))))))
168 fveq2 6861 . . . . . . . . . 10 (𝑔 = 𝑓 → (deg‘𝑔) = (deg‘𝑓))
169168eqeq2d 2741 . . . . . . . . 9 (𝑔 = 𝑓 → ((𝑑 + 1) = (deg‘𝑔) ↔ (𝑑 + 1) = (deg‘𝑓)))
170 cnveq 5840 . . . . . . . . . . . 12 (𝑔 = 𝑓𝑔 = 𝑓)
171170imaeq1d 6033 . . . . . . . . . . 11 (𝑔 = 𝑓 → (𝑔 “ {0}) = (𝑓 “ {0}))
172171fveq2d 6865 . . . . . . . . . 10 (𝑔 = 𝑓 → (♯‘(𝑔 “ {0})) = (♯‘(𝑓 “ {0})))
173172, 168eqeq12d 2746 . . . . . . . . 9 (𝑔 = 𝑓 → ((♯‘(𝑔 “ {0})) = (deg‘𝑔) ↔ (♯‘(𝑓 “ {0})) = (deg‘𝑓)))
174169, 173anbi12d 632 . . . . . . . 8 (𝑔 = 𝑓 → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) ↔ ((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓))))
175171sumeq1d 15673 . . . . . . . . 9 (𝑔 = 𝑓 → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = Σ𝑥 ∈ (𝑓 “ {0})𝑥)
176 fveq2 6861 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (coeff‘𝑔) = (coeff‘𝑓))
177168oveq1d 7405 . . . . . . . . . . . 12 (𝑔 = 𝑓 → ((deg‘𝑔) − 1) = ((deg‘𝑓) − 1))
178176, 177fveq12d 6868 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((coeff‘𝑔)‘((deg‘𝑔) − 1)) = ((coeff‘𝑓)‘((deg‘𝑓) − 1)))
179176, 168fveq12d 6868 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((coeff‘𝑔)‘(deg‘𝑔)) = ((coeff‘𝑓)‘(deg‘𝑓)))
180178, 179oveq12d 7408 . . . . . . . . . 10 (𝑔 = 𝑓 → (((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) = (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
181180negeqd 11422 . . . . . . . . 9 (𝑔 = 𝑓 → -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))
182175, 181eqeq12d 2746 . . . . . . . 8 (𝑔 = 𝑓 → (Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) ↔ Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
183174, 182imbi12d 344 . . . . . . 7 (𝑔 = 𝑓 → ((((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) ↔ (((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
184183cbvralvw 3216 . . . . . 6 (∀𝑔 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
185167, 184imbitrdi 251 . . . . 5 (𝑑 ∈ ℕ → (∀𝑓 ∈ (Poly‘ℂ)((𝑑 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → ∀𝑓 ∈ (Poly‘ℂ)(((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))))
18630, 34, 38, 42, 148, 185nnind 12211 . . . 4 (𝑁 ∈ ℕ → ∀𝑓 ∈ (Poly‘ℂ)((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
18726, 186syl 17 . . 3 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝑁 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
188 plyssc 26112 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
189 vieta1.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
190188, 189sselid 3947 . . 3 (𝜑𝐹 ∈ (Poly‘ℂ))
19125, 187, 190rspcdva 3592 . 2 (𝜑 → ((♯‘𝑅) = 𝑁 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁))))
1921, 191mpd 15 1 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  {csn 4592   class class class wbr 5110   × cxp 5639  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cen 8918  Fincfn 8921  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  cexp 14033  chash 14302  Σcsu 15659  0𝑝c0p 25577  Polycply 26096  Xpcidp 26097  coeffccoe 26098  degcdgr 26099   quot cquot 26205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-idp 26101  df-coe 26102  df-dgr 26103  df-quot 26206
This theorem is referenced by:  basellem5  27002
  Copyright terms: Public domain W3C validator