| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vieta1.5 | . 2
⊢ (𝜑 → (♯‘𝑅) = 𝑁) | 
| 2 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹)) | 
| 3 | 2 | eqeq2d 2747 | . . . . . 6
⊢ (𝑓 = 𝐹 → (𝑁 = (deg‘𝑓) ↔ 𝑁 = (deg‘𝐹))) | 
| 4 |  | cnveq 5883 | . . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | 
| 5 | 4 | imaeq1d 6076 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (◡𝑓 “ {0}) = (◡𝐹 “ {0})) | 
| 6 |  | vieta1.3 | . . . . . . . . 9
⊢ 𝑅 = (◡𝐹 “ {0}) | 
| 7 | 5, 6 | eqtr4di 2794 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (◡𝑓 “ {0}) = 𝑅) | 
| 8 | 7 | fveq2d 6909 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (♯‘(◡𝑓 “ {0})) = (♯‘𝑅)) | 
| 9 |  | vieta1.2 | . . . . . . . 8
⊢ 𝑁 = (deg‘𝐹) | 
| 10 | 2, 9 | eqtr4di 2794 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (deg‘𝑓) = 𝑁) | 
| 11 | 8, 10 | eqeq12d 2752 | . . . . . 6
⊢ (𝑓 = 𝐹 → ((♯‘(◡𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘𝑅) = 𝑁)) | 
| 12 | 3, 11 | anbi12d 632 | . . . . 5
⊢ (𝑓 = 𝐹 → ((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑁 = (deg‘𝐹) ∧ (♯‘𝑅) = 𝑁))) | 
| 13 | 9 | biantrur 530 | . . . . 5
⊢
((♯‘𝑅) =
𝑁 ↔ (𝑁 = (deg‘𝐹) ∧ (♯‘𝑅) = 𝑁)) | 
| 14 | 12, 13 | bitr4di 289 | . . . 4
⊢ (𝑓 = 𝐹 → ((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (♯‘𝑅) = 𝑁)) | 
| 15 | 7 | sumeq1d 15737 | . . . . 5
⊢ (𝑓 = 𝐹 → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = Σ𝑥 ∈ 𝑅 𝑥) | 
| 16 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹)) | 
| 17 |  | vieta1.1 | . . . . . . . . 9
⊢ 𝐴 = (coeff‘𝐹) | 
| 18 | 16, 17 | eqtr4di 2794 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴) | 
| 19 | 10 | oveq1d 7447 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → ((deg‘𝑓) − 1) = (𝑁 − 1)) | 
| 20 | 18, 19 | fveq12d 6912 | . . . . . . 7
⊢ (𝑓 = 𝐹 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = (𝐴‘(𝑁 − 1))) | 
| 21 | 18, 10 | fveq12d 6912 | . . . . . . 7
⊢ (𝑓 = 𝐹 → ((coeff‘𝑓)‘(deg‘𝑓)) = (𝐴‘𝑁)) | 
| 22 | 20, 21 | oveq12d 7450 | . . . . . 6
⊢ (𝑓 = 𝐹 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = ((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | 
| 23 | 22 | negeqd 11503 | . . . . 5
⊢ (𝑓 = 𝐹 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | 
| 24 | 15, 23 | eqeq12d 2752 | . . . 4
⊢ (𝑓 = 𝐹 → (Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁)))) | 
| 25 | 14, 24 | imbi12d 344 | . . 3
⊢ (𝑓 = 𝐹 → (((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔
((♯‘𝑅) = 𝑁 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))))) | 
| 26 |  | vieta1.6 | . . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 27 |  | eqeq1 2740 | . . . . . . . 8
⊢ (𝑦 = 1 → (𝑦 = (deg‘𝑓) ↔ 1 = (deg‘𝑓))) | 
| 28 | 27 | anbi1d 631 | . . . . . . 7
⊢ (𝑦 = 1 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (1 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) | 
| 29 | 28 | imbi1d 341 | . . . . . 6
⊢ (𝑦 = 1 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((1 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 30 | 29 | ralbidv 3177 | . . . . 5
⊢ (𝑦 = 1 → (∀𝑓 ∈
(Poly‘ℂ)((𝑦 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((1
= (deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 31 |  | eqeq1 2740 | . . . . . . . 8
⊢ (𝑦 = 𝑑 → (𝑦 = (deg‘𝑓) ↔ 𝑑 = (deg‘𝑓))) | 
| 32 | 31 | anbi1d 631 | . . . . . . 7
⊢ (𝑦 = 𝑑 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑑 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) | 
| 33 | 32 | imbi1d 341 | . . . . . 6
⊢ (𝑦 = 𝑑 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑑 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 34 | 33 | ralbidv 3177 | . . . . 5
⊢ (𝑦 = 𝑑 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 35 |  | eqeq1 2740 | . . . . . . . 8
⊢ (𝑦 = (𝑑 + 1) → (𝑦 = (deg‘𝑓) ↔ (𝑑 + 1) = (deg‘𝑓))) | 
| 36 | 35 | anbi1d 631 | . . . . . . 7
⊢ (𝑦 = (𝑑 + 1) → ((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ ((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) | 
| 37 | 36 | imbi1d 341 | . . . . . 6
⊢ (𝑦 = (𝑑 + 1) → (((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ (((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 38 | 37 | ralbidv 3177 | . . . . 5
⊢ (𝑦 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 39 |  | eqeq1 2740 | . . . . . . . 8
⊢ (𝑦 = 𝑁 → (𝑦 = (deg‘𝑓) ↔ 𝑁 = (deg‘𝑓))) | 
| 40 | 39 | anbi1d 631 | . . . . . . 7
⊢ (𝑦 = 𝑁 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) | 
| 41 | 40 | imbi1d 341 | . . . . . 6
⊢ (𝑦 = 𝑁 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 42 | 41 | ralbidv 3177 | . . . . 5
⊢ (𝑦 = 𝑁 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)((𝑁 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 43 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢
(coeff‘𝑓) =
(coeff‘𝑓) | 
| 44 | 43 | coef3 26272 | . . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (Poly‘ℂ)
→ (coeff‘𝑓):ℕ0⟶ℂ) | 
| 45 | 44 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (coeff‘𝑓):ℕ0⟶ℂ) | 
| 46 |  | 0nn0 12543 | . . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 | 
| 47 |  | ffvelcdm 7100 | . . . . . . . . . . . . 13
⊢
(((coeff‘𝑓):ℕ0⟶ℂ ∧ 0
∈ ℕ0) → ((coeff‘𝑓)‘0) ∈ ℂ) | 
| 48 | 45, 46, 47 | sylancl 586 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘0) ∈ ℂ) | 
| 49 |  | 1nn0 12544 | . . . . . . . . . . . . 13
⊢ 1 ∈
ℕ0 | 
| 50 |  | ffvelcdm 7100 | . . . . . . . . . . . . 13
⊢
(((coeff‘𝑓):ℕ0⟶ℂ ∧ 1
∈ ℕ0) → ((coeff‘𝑓)‘1) ∈ ℂ) | 
| 51 | 45, 49, 50 | sylancl 586 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘1) ∈ ℂ) | 
| 52 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 1 = (deg‘𝑓)) | 
| 53 | 52 | fveq2d 6909 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘1) = ((coeff‘𝑓)‘(deg‘𝑓))) | 
| 54 |  | ax-1ne0 11225 | . . . . . . . . . . . . . . . . 17
⊢ 1 ≠
0 | 
| 55 | 54 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 1 ≠ 0) | 
| 56 | 52, 55 | eqnetrrd 3008 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (deg‘𝑓) ≠
0) | 
| 57 |  | fveq2 6905 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 0𝑝 →
(deg‘𝑓) =
(deg‘0𝑝)) | 
| 58 |  | dgr0 26303 | . . . . . . . . . . . . . . . . 17
⊢
(deg‘0𝑝) = 0 | 
| 59 | 57, 58 | eqtrdi 2792 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 = 0𝑝 →
(deg‘𝑓) =
0) | 
| 60 | 59 | necon3i 2972 | . . . . . . . . . . . . . . 15
⊢
((deg‘𝑓) ≠
0 → 𝑓 ≠
0𝑝) | 
| 61 | 56, 60 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 𝑓 ≠
0𝑝) | 
| 62 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢
(deg‘𝑓) =
(deg‘𝑓) | 
| 63 | 62, 43 | dgreq0 26306 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (Poly‘ℂ)
→ (𝑓 =
0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0)) | 
| 64 | 63 | necon3bid 2984 | . . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (Poly‘ℂ)
→ (𝑓 ≠
0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)) | 
| 65 | 64 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (𝑓 ≠
0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)) | 
| 66 | 61, 65 | mpbid 232 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0) | 
| 67 | 53, 66 | eqnetrd 3007 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘1) ≠ 0) | 
| 68 | 48, 51, 67 | divcld 12044 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) | 
| 69 | 68 | negcld 11608 | . . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) | 
| 70 |  | id 22 | . . . . . . . . . . 11
⊢ (𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) → 𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) | 
| 71 | 70 | sumsn 15783 | . . . . . . . . . 10
⊢
((-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧
-(((coeff‘𝑓)‘0)
/ ((coeff‘𝑓)‘1)) ∈ ℂ) →
Σ𝑥 ∈
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) | 
| 72 | 69, 69, 71 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑥 ∈
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) | 
| 73 | 72 | adantrr 717 | . . . . . . . 8
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
Σ𝑥 ∈
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) | 
| 74 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢ (◡𝑓 “ {0}) = (◡𝑓 “ {0}) | 
| 75 | 74 | fta1 26351 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 𝑓 ≠
0𝑝) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) | 
| 76 | 61, 75 | syldan 591 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) | 
| 77 | 76 | simpld 494 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (◡𝑓 “ {0}) ∈ Fin) | 
| 78 | 77 | adantrr 717 | . . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
(◡𝑓 “ {0}) ∈ Fin) | 
| 79 | 43, 62 | coeid2 26279 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) → (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘))) | 
| 80 | 69, 79 | syldan 591 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘))) | 
| 81 | 52 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (0...1) = (0...(deg‘𝑓))) | 
| 82 | 81 | sumeq1d 15737 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑘 ∈
(0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘))) | 
| 83 |  | nn0uz 12921 | . . . . . . . . . . . . . . . 16
⊢
ℕ0 = (ℤ≥‘0) | 
| 84 |  | 1e0p1 12777 | . . . . . . . . . . . . . . . 16
⊢ 1 = (0 +
1) | 
| 85 |  | fveq2 6905 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 → ((coeff‘𝑓)‘𝑘) = ((coeff‘𝑓)‘1)) | 
| 86 |  | oveq2 7440 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 →
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) = (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) | 
| 87 | 85, 86 | oveq12d 7450 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 1 → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘1) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) | 
| 88 | 45 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
∧ 𝑘 ∈
ℕ0) → ((coeff‘𝑓)‘𝑘) ∈ ℂ) | 
| 89 |  | expcl 14121 | . . . . . . . . . . . . . . . . . 18
⊢
((-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) ∈ ℂ) | 
| 90 | 69, 89 | sylan 580 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
∧ 𝑘 ∈
ℕ0) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) ∈ ℂ) | 
| 91 | 88, 90 | mulcld 11282 | . . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
∧ 𝑘 ∈
ℕ0) → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) ∈
ℂ) | 
| 92 |  | 0z 12626 | . . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℤ | 
| 93 | 69 | exp0d 14181 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0) = 1) | 
| 94 | 93 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) =
(((coeff‘𝑓)‘0)
· 1)) | 
| 95 | 48 | mulridd 11279 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) · 1) = ((coeff‘𝑓)‘0)) | 
| 96 | 94, 95 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) =
((coeff‘𝑓)‘0)) | 
| 97 | 96, 48 | eqeltrd 2840 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) ∈
ℂ) | 
| 98 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → ((coeff‘𝑓)‘𝑘) = ((coeff‘𝑓)‘0)) | 
| 99 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 →
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) = (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) | 
| 100 | 98, 99 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0))) | 
| 101 | 100 | fsum1 15784 | . . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℤ ∧ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) ∈
ℂ) → Σ𝑘
∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0))) | 
| 102 | 92, 97, 101 | sylancr 587 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑘 ∈
(0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0))) | 
| 103 | 102, 96 | eqtrd 2776 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑘 ∈
(0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = ((coeff‘𝑓)‘0)) | 
| 104 | 103, 46 | jctil 519 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = ((coeff‘𝑓)‘0))) | 
| 105 | 69 | exp1d 14182 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1) = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) | 
| 106 | 105 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) =
(((coeff‘𝑓)‘1)
· -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))) | 
| 107 | 51, 68 | mulneg2d 11718 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘1) · -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) =
-(((coeff‘𝑓)‘1)
· (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))) | 
| 108 | 48, 51, 67 | divcan2d 12046 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) =
((coeff‘𝑓)‘0)) | 
| 109 | 108 | negeqd 11503 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ -(((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) =
-((coeff‘𝑓)‘0)) | 
| 110 | 106, 107,
109 | 3eqtrd 2780 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) =
-((coeff‘𝑓)‘0)) | 
| 111 | 110 | oveq2d 7448 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) + (((coeff‘𝑓)‘1) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) = (((coeff‘𝑓)‘0) +
-((coeff‘𝑓)‘0))) | 
| 112 | 48 | negidd 11611 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) + -((coeff‘𝑓)‘0)) =
0) | 
| 113 | 111, 112 | eqtrd 2776 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) + (((coeff‘𝑓)‘1) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) = 0) | 
| 114 | 83, 84, 87, 91, 104, 113 | fsump1i 15806 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = 0)) | 
| 115 | 114 | simprd 495 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑘 ∈
(0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = 0) | 
| 116 | 80, 82, 115 | 3eqtr2d 2782 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0) | 
| 117 |  | plyf 26238 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (Poly‘ℂ)
→ 𝑓:ℂ⟶ℂ) | 
| 118 | 117 | ffnd 6736 | . . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (Poly‘ℂ)
→ 𝑓 Fn
ℂ) | 
| 119 | 118 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 𝑓 Fn
ℂ) | 
| 120 |  | fniniseg 7079 | . . . . . . . . . . . . . 14
⊢ (𝑓 Fn ℂ →
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (◡𝑓 “ {0}) ↔ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧
(𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0))) | 
| 121 | 119, 120 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (◡𝑓 “ {0}) ↔ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧
(𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0))) | 
| 122 | 69, 116, 121 | mpbir2and 713 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (◡𝑓 “ {0})) | 
| 123 | 122 | snssd 4808 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (◡𝑓 “ {0})) | 
| 124 | 123 | adantrr 717 | . . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (◡𝑓 “ {0})) | 
| 125 |  | hashsng 14409 | . . . . . . . . . . . . . . 15
⊢
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ →
(♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = 1) | 
| 126 | 69, 125 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = 1) | 
| 127 | 126, 52 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (deg‘𝑓)) | 
| 128 | 127 | adantrr 717 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
(♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (deg‘𝑓)) | 
| 129 |  | simprr 772 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) | 
| 130 | 128, 129 | eqtr4d 2779 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
(♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(◡𝑓 “ {0}))) | 
| 131 |  | snfi 9084 | . . . . . . . . . . . . 13
⊢
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ∈ Fin | 
| 132 |  | hashen 14387 | . . . . . . . . . . . . 13
⊢
(({-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ∈ Fin ∧ (◡𝑓 “ {0}) ∈ Fin) →
((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(◡𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0}))) | 
| 133 | 131, 77, 132 | sylancr 587 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(◡𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0}))) | 
| 134 | 133 | adantrr 717 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(◡𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0}))) | 
| 135 | 130, 134 | mpbid 232 | . . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0})) | 
| 136 |  | fisseneq 9294 | . . . . . . . . . 10
⊢ (((◡𝑓 “ {0}) ∈ Fin ∧
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (◡𝑓 “ {0}) ∧ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0})) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} = (◡𝑓 “ {0})) | 
| 137 | 78, 124, 135, 136 | syl3anc 1372 | . . . . . . . . 9
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} = (◡𝑓 “ {0})) | 
| 138 | 137 | sumeq1d 15737 | . . . . . . . 8
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
Σ𝑥 ∈
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = Σ𝑥 ∈ (◡𝑓 “ {0})𝑥) | 
| 139 |  | 1m1e0 12339 | . . . . . . . . . . . . 13
⊢ (1
− 1) = 0 | 
| 140 | 52 | oveq1d 7447 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (1 − 1) = ((deg‘𝑓) − 1)) | 
| 141 | 139, 140 | eqtr3id 2790 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 0 = ((deg‘𝑓)
− 1)) | 
| 142 | 141 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘0) = ((coeff‘𝑓)‘((deg‘𝑓) − 1))) | 
| 143 | 142, 53 | oveq12d 7450 | . . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = (((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) | 
| 144 | 143 | negeqd 11503 | . . . . . . . . 9
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) | 
| 145 | 144 | adantrr 717 | . . . . . . . 8
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
-(((coeff‘𝑓)‘0)
/ ((coeff‘𝑓)‘1)) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) | 
| 146 | 73, 138, 145 | 3eqtr3d 2784 | . . . . . . 7
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) | 
| 147 | 146 | ex 412 | . . . . . 6
⊢ (𝑓 ∈ (Poly‘ℂ)
→ ((1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓)) →
Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) | 
| 148 | 147 | rgen 3062 | . . . . 5
⊢
∀𝑓 ∈
(Poly‘ℂ)((1 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) | 
| 149 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) | 
| 150 | 149 | cbvsumv 15733 | . . . . . . . . . . 11
⊢
Σ𝑦 ∈
(◡𝑓 “ {0})𝑦 = Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 | 
| 151 | 150 | eqeq1i 2741 | . . . . . . . . . 10
⊢
(Σ𝑦 ∈
(◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) | 
| 152 | 151 | imbi2i 336 | . . . . . . . . 9
⊢ (((𝑑 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑑 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) | 
| 153 | 152 | ralbii 3092 | . . . . . . . 8
⊢
(∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) | 
| 154 |  | eqid 2736 | . . . . . . . . . 10
⊢
(coeff‘𝑔) =
(coeff‘𝑔) | 
| 155 |  | eqid 2736 | . . . . . . . . . 10
⊢
(deg‘𝑔) =
(deg‘𝑔) | 
| 156 |  | eqid 2736 | . . . . . . . . . 10
⊢ (◡𝑔 “ {0}) = (◡𝑔 “ {0}) | 
| 157 |  | simp1r 1198 | . . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → 𝑔 ∈
(Poly‘ℂ)) | 
| 158 |  | simp3r 1202 | . . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) | 
| 159 |  | simp1l 1197 | . . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → 𝑑 ∈ ℕ) | 
| 160 |  | simp3l 1201 | . . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → (𝑑 + 1) = (deg‘𝑔)) | 
| 161 |  | simp2 1137 | . . . . . . . . . . 11
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) | 
| 162 | 161, 153 | sylib 218 | . . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) | 
| 163 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑔 quot (Xp
∘f − (ℂ × {𝑧}))) = (𝑔 quot (Xp
∘f − (ℂ × {𝑧}))) | 
| 164 | 154, 155,
156, 157, 158, 159, 160, 162, 163 | vieta1lem2 26354 | . . . . . . . . 9
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) | 
| 165 | 164 | 3exp 1119 | . . . . . . . 8
⊢ ((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
→ (∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))))) | 
| 166 | 153, 165 | biimtrrid 243 | . . . . . . 7
⊢ ((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
→ (∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))))) | 
| 167 | 166 | ralrimdva 3153 | . . . . . 6
⊢ (𝑑 ∈ ℕ →
(∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → ∀𝑔 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑔) ∧
(♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))))) | 
| 168 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑔 = 𝑓 → (deg‘𝑔) = (deg‘𝑓)) | 
| 169 | 168 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑔 = 𝑓 → ((𝑑 + 1) = (deg‘𝑔) ↔ (𝑑 + 1) = (deg‘𝑓))) | 
| 170 |  | cnveq 5883 | . . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → ◡𝑔 = ◡𝑓) | 
| 171 | 170 | imaeq1d 6076 | . . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (◡𝑔 “ {0}) = (◡𝑓 “ {0})) | 
| 172 | 171 | fveq2d 6909 | . . . . . . . . . 10
⊢ (𝑔 = 𝑓 → (♯‘(◡𝑔 “ {0})) = (♯‘(◡𝑓 “ {0}))) | 
| 173 | 172, 168 | eqeq12d 2752 | . . . . . . . . 9
⊢ (𝑔 = 𝑓 → ((♯‘(◡𝑔 “ {0})) = (deg‘𝑔) ↔ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓))) | 
| 174 | 169, 173 | anbi12d 632 | . . . . . . . 8
⊢ (𝑔 = 𝑓 → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) ↔ ((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) | 
| 175 | 171 | sumeq1d 15737 | . . . . . . . . 9
⊢ (𝑔 = 𝑓 → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = Σ𝑥 ∈ (◡𝑓 “ {0})𝑥) | 
| 176 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (coeff‘𝑔) = (coeff‘𝑓)) | 
| 177 | 168 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → ((deg‘𝑔) − 1) = ((deg‘𝑓) − 1)) | 
| 178 | 176, 177 | fveq12d 6912 | . . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → ((coeff‘𝑔)‘((deg‘𝑔) − 1)) = ((coeff‘𝑓)‘((deg‘𝑓) − 1))) | 
| 179 | 176, 168 | fveq12d 6912 | . . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → ((coeff‘𝑔)‘(deg‘𝑔)) = ((coeff‘𝑓)‘(deg‘𝑓))) | 
| 180 | 178, 179 | oveq12d 7450 | . . . . . . . . . 10
⊢ (𝑔 = 𝑓 → (((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) = (((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) | 
| 181 | 180 | negeqd 11503 | . . . . . . . . 9
⊢ (𝑔 = 𝑓 → -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) | 
| 182 | 175, 181 | eqeq12d 2752 | . . . . . . . 8
⊢ (𝑔 = 𝑓 → (Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) ↔ Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) | 
| 183 | 174, 182 | imbi12d 344 | . . . . . . 7
⊢ (𝑔 = 𝑓 → ((((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) ↔ (((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 184 | 183 | cbvralvw 3236 | . . . . . 6
⊢
(∀𝑔 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑔) ∧
(♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) | 
| 185 | 167, 184 | imbitrdi 251 | . . . . 5
⊢ (𝑑 ∈ ℕ →
(∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → ∀𝑓 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) | 
| 186 | 30, 34, 38, 42, 148, 185 | nnind 12285 | . . . 4
⊢ (𝑁 ∈ ℕ →
∀𝑓 ∈
(Poly‘ℂ)((𝑁 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) | 
| 187 | 26, 186 | syl 17 | . . 3
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) | 
| 188 |  | plyssc 26240 | . . . 4
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) | 
| 189 |  | vieta1.4 | . . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | 
| 190 | 188, 189 | sselid 3980 | . . 3
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℂ)) | 
| 191 | 25, 187, 190 | rspcdva 3622 | . 2
⊢ (𝜑 → ((♯‘𝑅) = 𝑁 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁)))) | 
| 192 | 1, 191 | mpd 15 | 1
⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |