Step | Hyp | Ref
| Expression |
1 | | vieta1.5 |
. 2
⊢ (𝜑 → (♯‘𝑅) = 𝑁) |
2 | | fveq2 6783 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹)) |
3 | 2 | eqeq2d 2750 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑁 = (deg‘𝑓) ↔ 𝑁 = (deg‘𝐹))) |
4 | | cnveq 5785 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) |
5 | 4 | imaeq1d 5971 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (◡𝑓 “ {0}) = (◡𝐹 “ {0})) |
6 | | vieta1.3 |
. . . . . . . . 9
⊢ 𝑅 = (◡𝐹 “ {0}) |
7 | 5, 6 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (◡𝑓 “ {0}) = 𝑅) |
8 | 7 | fveq2d 6787 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (♯‘(◡𝑓 “ {0})) = (♯‘𝑅)) |
9 | | vieta1.2 |
. . . . . . . 8
⊢ 𝑁 = (deg‘𝐹) |
10 | 2, 9 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (deg‘𝑓) = 𝑁) |
11 | 8, 10 | eqeq12d 2755 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((♯‘(◡𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘𝑅) = 𝑁)) |
12 | 3, 11 | anbi12d 631 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑁 = (deg‘𝐹) ∧ (♯‘𝑅) = 𝑁))) |
13 | 9 | biantrur 531 |
. . . . 5
⊢
((♯‘𝑅) =
𝑁 ↔ (𝑁 = (deg‘𝐹) ∧ (♯‘𝑅) = 𝑁)) |
14 | 12, 13 | bitr4di 289 |
. . . 4
⊢ (𝑓 = 𝐹 → ((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (♯‘𝑅) = 𝑁)) |
15 | 7 | sumeq1d 15422 |
. . . . 5
⊢ (𝑓 = 𝐹 → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = Σ𝑥 ∈ 𝑅 𝑥) |
16 | | fveq2 6783 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹)) |
17 | | vieta1.1 |
. . . . . . . . 9
⊢ 𝐴 = (coeff‘𝐹) |
18 | 16, 17 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴) |
19 | 10 | oveq1d 7299 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((deg‘𝑓) − 1) = (𝑁 − 1)) |
20 | 18, 19 | fveq12d 6790 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = (𝐴‘(𝑁 − 1))) |
21 | 18, 10 | fveq12d 6790 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((coeff‘𝑓)‘(deg‘𝑓)) = (𝐴‘𝑁)) |
22 | 20, 21 | oveq12d 7302 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = ((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
23 | 22 | negeqd 11224 |
. . . . 5
⊢ (𝑓 = 𝐹 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
24 | 15, 23 | eqeq12d 2755 |
. . . 4
⊢ (𝑓 = 𝐹 → (Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁)))) |
25 | 14, 24 | imbi12d 345 |
. . 3
⊢ (𝑓 = 𝐹 → (((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔
((♯‘𝑅) = 𝑁 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))))) |
26 | | vieta1.6 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
27 | | eqeq1 2743 |
. . . . . . . 8
⊢ (𝑦 = 1 → (𝑦 = (deg‘𝑓) ↔ 1 = (deg‘𝑓))) |
28 | 27 | anbi1d 630 |
. . . . . . 7
⊢ (𝑦 = 1 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (1 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) |
29 | 28 | imbi1d 342 |
. . . . . 6
⊢ (𝑦 = 1 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((1 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
30 | 29 | ralbidv 3113 |
. . . . 5
⊢ (𝑦 = 1 → (∀𝑓 ∈
(Poly‘ℂ)((𝑦 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈ (Poly‘ℂ)((1
= (deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
31 | | eqeq1 2743 |
. . . . . . . 8
⊢ (𝑦 = 𝑑 → (𝑦 = (deg‘𝑓) ↔ 𝑑 = (deg‘𝑓))) |
32 | 31 | anbi1d 630 |
. . . . . . 7
⊢ (𝑦 = 𝑑 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑑 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) |
33 | 32 | imbi1d 342 |
. . . . . 6
⊢ (𝑦 = 𝑑 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑑 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
34 | 33 | ralbidv 3113 |
. . . . 5
⊢ (𝑦 = 𝑑 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
35 | | eqeq1 2743 |
. . . . . . . 8
⊢ (𝑦 = (𝑑 + 1) → (𝑦 = (deg‘𝑓) ↔ (𝑑 + 1) = (deg‘𝑓))) |
36 | 35 | anbi1d 630 |
. . . . . . 7
⊢ (𝑦 = (𝑑 + 1) → ((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ ((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) |
37 | 36 | imbi1d 342 |
. . . . . 6
⊢ (𝑦 = (𝑑 + 1) → (((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ (((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
38 | 37 | ralbidv 3113 |
. . . . 5
⊢ (𝑦 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
39 | | eqeq1 2743 |
. . . . . . . 8
⊢ (𝑦 = 𝑁 → (𝑦 = (deg‘𝑓) ↔ 𝑁 = (deg‘𝑓))) |
40 | 39 | anbi1d 630 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → ((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) |
41 | 40 | imbi1d 342 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
42 | 41 | ralbidv 3113 |
. . . . 5
⊢ (𝑦 = 𝑁 → (∀𝑓 ∈ (Poly‘ℂ)((𝑦 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)((𝑁 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
43 | | eqid 2739 |
. . . . . . . . . . . . . . 15
⊢
(coeff‘𝑓) =
(coeff‘𝑓) |
44 | 43 | coef3 25402 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (Poly‘ℂ)
→ (coeff‘𝑓):ℕ0⟶ℂ) |
45 | 44 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (coeff‘𝑓):ℕ0⟶ℂ) |
46 | | 0nn0 12257 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 |
47 | | ffvelrn 6968 |
. . . . . . . . . . . . 13
⊢
(((coeff‘𝑓):ℕ0⟶ℂ ∧ 0
∈ ℕ0) → ((coeff‘𝑓)‘0) ∈ ℂ) |
48 | 45, 46, 47 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘0) ∈ ℂ) |
49 | | 1nn0 12258 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℕ0 |
50 | | ffvelrn 6968 |
. . . . . . . . . . . . 13
⊢
(((coeff‘𝑓):ℕ0⟶ℂ ∧ 1
∈ ℕ0) → ((coeff‘𝑓)‘1) ∈ ℂ) |
51 | 45, 49, 50 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘1) ∈ ℂ) |
52 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 1 = (deg‘𝑓)) |
53 | 52 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘1) = ((coeff‘𝑓)‘(deg‘𝑓))) |
54 | | ax-1ne0 10949 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ≠
0 |
55 | 54 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 1 ≠ 0) |
56 | 52, 55 | eqnetrrd 3013 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (deg‘𝑓) ≠
0) |
57 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 0𝑝 →
(deg‘𝑓) =
(deg‘0𝑝)) |
58 | | dgr0 25432 |
. . . . . . . . . . . . . . . . 17
⊢
(deg‘0𝑝) = 0 |
59 | 57, 58 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 0𝑝 →
(deg‘𝑓) =
0) |
60 | 59 | necon3i 2977 |
. . . . . . . . . . . . . . 15
⊢
((deg‘𝑓) ≠
0 → 𝑓 ≠
0𝑝) |
61 | 56, 60 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 𝑓 ≠
0𝑝) |
62 | | eqid 2739 |
. . . . . . . . . . . . . . . . 17
⊢
(deg‘𝑓) =
(deg‘𝑓) |
63 | 62, 43 | dgreq0 25435 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (Poly‘ℂ)
→ (𝑓 =
0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0)) |
64 | 63 | necon3bid 2989 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (Poly‘ℂ)
→ (𝑓 ≠
0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)) |
65 | 64 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (𝑓 ≠
0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)) |
66 | 61, 65 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0) |
67 | 53, 66 | eqnetrd 3012 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘1) ≠ 0) |
68 | 48, 51, 67 | divcld 11760 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) |
69 | 68 | negcld 11328 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) |
70 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) → 𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) |
71 | 70 | sumsn 15467 |
. . . . . . . . . 10
⊢
((-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧
-(((coeff‘𝑓)‘0)
/ ((coeff‘𝑓)‘1)) ∈ ℂ) →
Σ𝑥 ∈
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) |
72 | 69, 69, 71 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑥 ∈
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) |
73 | 72 | adantrr 714 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
Σ𝑥 ∈
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) |
74 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢ (◡𝑓 “ {0}) = (◡𝑓 “ {0}) |
75 | 74 | fta1 25477 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 𝑓 ≠
0𝑝) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) |
76 | 61, 75 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) |
77 | 76 | simpld 495 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (◡𝑓 “ {0}) ∈ Fin) |
78 | 77 | adantrr 714 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
(◡𝑓 “ {0}) ∈ Fin) |
79 | 43, 62 | coeid2 25409 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ) → (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘))) |
80 | 69, 79 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘))) |
81 | 52 | oveq2d 7300 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (0...1) = (0...(deg‘𝑓))) |
82 | 81 | sumeq1d 15422 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑘 ∈
(0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘))) |
83 | | nn0uz 12629 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 = (ℤ≥‘0) |
84 | | 1e0p1 12488 |
. . . . . . . . . . . . . . . 16
⊢ 1 = (0 +
1) |
85 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 → ((coeff‘𝑓)‘𝑘) = ((coeff‘𝑓)‘1)) |
86 | | oveq2 7292 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 →
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) = (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) |
87 | 85, 86 | oveq12d 7302 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 1 → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘1) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) |
88 | 45 | ffvelrnda 6970 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
∧ 𝑘 ∈
ℕ0) → ((coeff‘𝑓)‘𝑘) ∈ ℂ) |
89 | | expcl 13809 |
. . . . . . . . . . . . . . . . . 18
⊢
((-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) ∈ ℂ) |
90 | 69, 89 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
∧ 𝑘 ∈
ℕ0) → (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) ∈ ℂ) |
91 | 88, 90 | mulcld 11004 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
∧ 𝑘 ∈
ℕ0) → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) ∈
ℂ) |
92 | | 0z 12339 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℤ |
93 | 69 | exp0d 13867 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0) = 1) |
94 | 93 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) =
(((coeff‘𝑓)‘0)
· 1)) |
95 | 48 | mulid1d 11001 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) · 1) = ((coeff‘𝑓)‘0)) |
96 | 94, 95 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) =
((coeff‘𝑓)‘0)) |
97 | 96, 48 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) ∈
ℂ) |
98 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → ((coeff‘𝑓)‘𝑘) = ((coeff‘𝑓)‘0)) |
99 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 →
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘) = (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) |
100 | 98, 99 | oveq12d 7302 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → (((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0))) |
101 | 100 | fsum1 15468 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℤ ∧ (((coeff‘𝑓)‘0) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0)) ∈
ℂ) → Σ𝑘
∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0))) |
102 | 92, 97, 101 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑘 ∈
(0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = (((coeff‘𝑓)‘0) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑0))) |
103 | 102, 96 | eqtrd 2779 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑘 ∈
(0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = ((coeff‘𝑓)‘0)) |
104 | 103, 46 | jctil 520 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = ((coeff‘𝑓)‘0))) |
105 | 69 | exp1d 13868 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1) = -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) |
106 | 105 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) =
(((coeff‘𝑓)‘1)
· -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))) |
107 | 51, 68 | mulneg2d 11438 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘1) · -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) =
-(((coeff‘𝑓)‘1)
· (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)))) |
108 | 48, 51, 67 | divcan2d 11762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) =
((coeff‘𝑓)‘0)) |
109 | 108 | negeqd 11224 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ -(((coeff‘𝑓)‘1) · (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) =
-((coeff‘𝑓)‘0)) |
110 | 106, 107,
109 | 3eqtrd 2783 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘1) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1)) =
-((coeff‘𝑓)‘0)) |
111 | 110 | oveq2d 7300 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) + (((coeff‘𝑓)‘1) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) = (((coeff‘𝑓)‘0) +
-((coeff‘𝑓)‘0))) |
112 | 48 | negidd 11331 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) + -((coeff‘𝑓)‘0)) =
0) |
113 | 111, 112 | eqtrd 2779 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) + (((coeff‘𝑓)‘1) ·
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑1))) = 0) |
114 | 83, 84, 87, 91, 104, 113 | fsump1i 15490 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = 0)) |
115 | 114 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ Σ𝑘 ∈
(0...1)(((coeff‘𝑓)‘𝑘) · (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))↑𝑘)) = 0) |
116 | 80, 82, 115 | 3eqtr2d 2785 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0) |
117 | | plyf 25368 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (Poly‘ℂ)
→ 𝑓:ℂ⟶ℂ) |
118 | 117 | ffnd 6610 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (Poly‘ℂ)
→ 𝑓 Fn
ℂ) |
119 | 118 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 𝑓 Fn
ℂ) |
120 | | fniniseg 6946 |
. . . . . . . . . . . . . 14
⊢ (𝑓 Fn ℂ →
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (◡𝑓 “ {0}) ↔ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧
(𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0))) |
121 | 119, 120 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (◡𝑓 “ {0}) ↔ (-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ ∧
(𝑓‘-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))) = 0))) |
122 | 69, 116, 121 | mpbir2and 710 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ (◡𝑓 “ {0})) |
123 | 122 | snssd 4743 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (◡𝑓 “ {0})) |
124 | 123 | adantrr 714 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (◡𝑓 “ {0})) |
125 | | hashsng 14093 |
. . . . . . . . . . . . . . 15
⊢
(-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) ∈ ℂ →
(♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = 1) |
126 | 69, 125 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = 1) |
127 | 126, 52 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (deg‘𝑓)) |
128 | 127 | adantrr 714 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
(♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (deg‘𝑓)) |
129 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) |
130 | 128, 129 | eqtr4d 2782 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
(♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(◡𝑓 “ {0}))) |
131 | | snfi 8843 |
. . . . . . . . . . . . 13
⊢
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ∈ Fin |
132 | | hashen 14070 |
. . . . . . . . . . . . 13
⊢
(({-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ∈ Fin ∧ (◡𝑓 “ {0}) ∈ Fin) →
((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(◡𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0}))) |
133 | 131, 77, 132 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(◡𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0}))) |
134 | 133 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
((♯‘{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}) = (♯‘(◡𝑓 “ {0})) ↔ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0}))) |
135 | 130, 134 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0})) |
136 | | fisseneq 9043 |
. . . . . . . . . 10
⊢ (((◡𝑓 “ {0}) ∈ Fin ∧
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ⊆ (◡𝑓 “ {0}) ∧ {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} ≈ (◡𝑓 “ {0})) → {-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} = (◡𝑓 “ {0})) |
137 | 78, 124, 135, 136 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))} = (◡𝑓 “ {0})) |
138 | 137 | sumeq1d 15422 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
Σ𝑥 ∈
{-(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1))}𝑥 = Σ𝑥 ∈ (◡𝑓 “ {0})𝑥) |
139 | | 1m1e0 12054 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
140 | 52 | oveq1d 7299 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (1 − 1) = ((deg‘𝑓) − 1)) |
141 | 139, 140 | eqtr3id 2793 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ 0 = ((deg‘𝑓)
− 1)) |
142 | 141 | fveq2d 6787 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ ((coeff‘𝑓)‘0) = ((coeff‘𝑓)‘((deg‘𝑓) − 1))) |
143 | 142, 53 | oveq12d 7302 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ (((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = (((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) |
144 | 143 | negeqd 11224 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ 1 = (deg‘𝑓))
→ -(((coeff‘𝑓)‘0) / ((coeff‘𝑓)‘1)) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) |
145 | 144 | adantrr 714 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
-(((coeff‘𝑓)‘0)
/ ((coeff‘𝑓)‘1)) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) |
146 | 73, 138, 145 | 3eqtr3d 2787 |
. . . . . . 7
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ (1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓))) →
Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) |
147 | 146 | ex 413 |
. . . . . 6
⊢ (𝑓 ∈ (Poly‘ℂ)
→ ((1 = (deg‘𝑓)
∧ (♯‘(◡𝑓 “ {0})) =
(deg‘𝑓)) →
Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
148 | 147 | rgen 3075 |
. . . . 5
⊢
∀𝑓 ∈
(Poly‘ℂ)((1 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) |
149 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
150 | 149 | cbvsumv 15417 |
. . . . . . . . . . 11
⊢
Σ𝑦 ∈
(◡𝑓 “ {0})𝑦 = Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 |
151 | 150 | eqeq1i 2744 |
. . . . . . . . . 10
⊢
(Σ𝑦 ∈
(◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) |
152 | 151 | imbi2i 336 |
. . . . . . . . 9
⊢ (((𝑑 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝑑 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
153 | 152 | ralbii 3093 |
. . . . . . . 8
⊢
(∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
154 | | eqid 2739 |
. . . . . . . . . 10
⊢
(coeff‘𝑔) =
(coeff‘𝑔) |
155 | | eqid 2739 |
. . . . . . . . . 10
⊢
(deg‘𝑔) =
(deg‘𝑔) |
156 | | eqid 2739 |
. . . . . . . . . 10
⊢ (◡𝑔 “ {0}) = (◡𝑔 “ {0}) |
157 | | simp1r 1197 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → 𝑔 ∈
(Poly‘ℂ)) |
158 | | simp3r 1201 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) |
159 | | simp1l 1196 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → 𝑑 ∈ ℕ) |
160 | | simp3l 1200 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → (𝑑 + 1) = (deg‘𝑔)) |
161 | | simp2 1136 |
. . . . . . . . . . 11
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
162 | 161, 153 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
163 | | eqid 2739 |
. . . . . . . . . 10
⊢ (𝑔 quot (Xp
∘f − (ℂ × {𝑧}))) = (𝑔 quot (Xp
∘f − (ℂ × {𝑧}))) |
164 | 154, 155,
156, 157, 158, 159, 160, 162, 163 | vieta1lem2 25480 |
. . . . . . . . 9
⊢ (((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
∧ ∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ∧ ((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔))) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) |
165 | 164 | 3exp 1118 |
. . . . . . . 8
⊢ ((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
→ (∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑦 ∈ (◡𝑓 “ {0})𝑦 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))))) |
166 | 153, 165 | syl5bir 242 |
. . . . . . 7
⊢ ((𝑑 ∈ ℕ ∧ 𝑔 ∈ (Poly‘ℂ))
→ (∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))))) |
167 | 166 | ralrimdva 3107 |
. . . . . 6
⊢ (𝑑 ∈ ℕ →
(∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → ∀𝑔 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑔) ∧
(♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))))) |
168 | | fveq2 6783 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → (deg‘𝑔) = (deg‘𝑓)) |
169 | 168 | eqeq2d 2750 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → ((𝑑 + 1) = (deg‘𝑔) ↔ (𝑑 + 1) = (deg‘𝑓))) |
170 | | cnveq 5785 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → ◡𝑔 = ◡𝑓) |
171 | 170 | imaeq1d 5971 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (◡𝑔 “ {0}) = (◡𝑓 “ {0})) |
172 | 171 | fveq2d 6787 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → (♯‘(◡𝑔 “ {0})) = (♯‘(◡𝑓 “ {0}))) |
173 | 172, 168 | eqeq12d 2755 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → ((♯‘(◡𝑔 “ {0})) = (deg‘𝑔) ↔ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓))) |
174 | 169, 173 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑔 = 𝑓 → (((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) ↔ ((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)))) |
175 | 171 | sumeq1d 15422 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = Σ𝑥 ∈ (◡𝑓 “ {0})𝑥) |
176 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (coeff‘𝑔) = (coeff‘𝑓)) |
177 | 168 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → ((deg‘𝑔) − 1) = ((deg‘𝑓) − 1)) |
178 | 176, 177 | fveq12d 6790 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → ((coeff‘𝑔)‘((deg‘𝑔) − 1)) = ((coeff‘𝑓)‘((deg‘𝑓) − 1))) |
179 | 176, 168 | fveq12d 6790 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → ((coeff‘𝑔)‘(deg‘𝑔)) = ((coeff‘𝑓)‘(deg‘𝑓))) |
180 | 178, 179 | oveq12d 7302 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → (((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) = (((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) |
181 | 180 | negeqd 11224 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) /
((coeff‘𝑓)‘(deg‘𝑓)))) |
182 | 175, 181 | eqeq12d 2755 |
. . . . . . . 8
⊢ (𝑔 = 𝑓 → (Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔))) ↔ Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
183 | 174, 182 | imbi12d 345 |
. . . . . . 7
⊢ (𝑔 = 𝑓 → ((((𝑑 + 1) = (deg‘𝑔) ∧ (♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) ↔ (((𝑑 + 1) = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
184 | 183 | cbvralvw 3384 |
. . . . . 6
⊢
(∀𝑔 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑔) ∧
(♯‘(◡𝑔 “ {0})) = (deg‘𝑔)) → Σ𝑥 ∈ (◡𝑔 “ {0})𝑥 = -(((coeff‘𝑔)‘((deg‘𝑔) − 1)) / ((coeff‘𝑔)‘(deg‘𝑔)))) ↔ ∀𝑓 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
185 | 167, 184 | syl6ib 250 |
. . . . 5
⊢ (𝑑 ∈ ℕ →
(∀𝑓 ∈
(Poly‘ℂ)((𝑑 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) → ∀𝑓 ∈
(Poly‘ℂ)(((𝑑 +
1) = (deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))) |
186 | 30, 34, 38, 42, 148, 185 | nnind 12000 |
. . . 4
⊢ (𝑁 ∈ ℕ →
∀𝑓 ∈
(Poly‘ℂ)((𝑁 =
(deg‘𝑓) ∧
(♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
187 | 26, 186 | syl 17 |
. . 3
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝑁 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
188 | | plyssc 25370 |
. . . 4
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
189 | | vieta1.4 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
190 | 188, 189 | sselid 3920 |
. . 3
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℂ)) |
191 | 25, 187, 190 | rspcdva 3563 |
. 2
⊢ (𝜑 → ((♯‘𝑅) = 𝑁 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁)))) |
192 | 1, 191 | mpd 15 |
1
⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |