MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanhlt1 Structured version   Visualization version   GIF version

Theorem tanhlt1 15878
Description: The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanhlt1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)

Proof of Theorem tanhlt1
StepHypRef Expression
1 ax-icn 10939 . . . . . . 7 i ∈ ℂ
2 recn 10970 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 10964 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 587 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpcoshcl 15875 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+)
65rpne0d 12786 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0)
7 tanval 15846 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
84, 6, 7syl2anc 584 . . . . 5 (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
98oveq1d 7299 . . . 4 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i))
104sincld 15848 . . . . 5 (𝐴 ∈ ℝ → (sin‘(i · 𝐴)) ∈ ℂ)
11 recoshcl 15876 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ)
1211recnd 11012 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℂ)
131a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ∈ ℂ)
14 ine0 11419 . . . . . 6 i ≠ 0
1514a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ≠ 0)
1610, 12, 13, 6, 15divdiv32d 11785 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i) = (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))))
17 sinhval 15872 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
182, 17syl 17 . . . . 5 (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
19 coshval 15873 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
202, 19syl 17 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
2118, 20oveq12d 7302 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
229, 16, 213eqtrd 2783 . . 3 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
23 reefcl 15805 . . . . . 6 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
24 renegcl 11293 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2524reefcld 15806 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ)
2623, 25resubcld 11412 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ)
2726recnd 11012 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
2823, 25readdcld 11013 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ)
2928recnd 11012 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ)
30 2cnd 12060 . . . 4 (𝐴 ∈ ℝ → 2 ∈ ℂ)
3120, 6eqnetrrd 3013 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0)
32 2ne0 12086 . . . . . . 7 2 ≠ 0
3332a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 2 ≠ 0)
3429, 30, 33divne0bd 11772 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) ≠ 0 ↔ (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0))
3531, 34mpbird 256 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ≠ 0)
3627, 29, 30, 35, 33divcan7d 11788 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3722, 36eqtrd 2779 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3824rpefcld 15823 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ+)
3923, 38ltsubrpd 12813 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (exp‘𝐴))
4023, 38ltaddrpd 12814 . . . . 5 (𝐴 ∈ ℝ → (exp‘𝐴) < ((exp‘𝐴) + (exp‘-𝐴)))
4126, 23, 28, 39, 40lttrd 11145 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < ((exp‘𝐴) + (exp‘-𝐴)))
4229mulid1d 11001 . . . 4 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) · 1) = ((exp‘𝐴) + (exp‘-𝐴)))
4341, 42breqtrrd 5103 . . 3 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1))
44 1red 10985 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
45 efgt0 15821 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘𝐴))
46 efgt0 15821 . . . . . 6 (-𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4724, 46syl 17 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4823, 25, 45, 47addgt0d 11559 . . . 4 (𝐴 ∈ ℝ → 0 < ((exp‘𝐴) + (exp‘-𝐴)))
49 ltdivmul 11859 . . . 4 ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ ∧ 0 < ((exp‘𝐴) + (exp‘-𝐴)))) → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5026, 44, 28, 48, 49syl112anc 1373 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5143, 50mpbird 256 . 2 (𝐴 ∈ ℝ → (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1)
5237, 51eqbrtrd 5097 1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2107  wne 2944   class class class wbr 5075  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881  ici 10882   + caddc 10883   · cmul 10885   < clt 11018  cmin 11214  -cneg 11215   / cdiv 11641  2c2 12037  expce 15780  sincsin 15782  cosccos 15783  tanctan 15784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-rp 12740  df-ico 13094  df-fz 13249  df-fzo 13392  df-fl 13521  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-tan 15790
This theorem is referenced by:  tanhbnd  15879
  Copyright terms: Public domain W3C validator