MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanhlt1 Structured version   Visualization version   GIF version

Theorem tanhlt1 16208
Description: The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanhlt1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)

Proof of Theorem tanhlt1
StepHypRef Expression
1 ax-icn 11243 . . . . . . 7 i ∈ ℂ
2 recn 11274 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 11268 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 586 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpcoshcl 16205 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+)
65rpne0d 13104 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0)
7 tanval 16176 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
84, 6, 7syl2anc 583 . . . . 5 (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
98oveq1d 7463 . . . 4 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i))
104sincld 16178 . . . . 5 (𝐴 ∈ ℝ → (sin‘(i · 𝐴)) ∈ ℂ)
11 recoshcl 16206 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ)
1211recnd 11318 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℂ)
131a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ∈ ℂ)
14 ine0 11725 . . . . . 6 i ≠ 0
1514a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ≠ 0)
1610, 12, 13, 6, 15divdiv32d 12095 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i) = (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))))
17 sinhval 16202 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
182, 17syl 17 . . . . 5 (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
19 coshval 16203 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
202, 19syl 17 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
2118, 20oveq12d 7466 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
229, 16, 213eqtrd 2784 . . 3 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
23 reefcl 16135 . . . . . 6 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
24 renegcl 11599 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2524reefcld 16136 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ)
2623, 25resubcld 11718 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ)
2726recnd 11318 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
2823, 25readdcld 11319 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ)
2928recnd 11318 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ)
30 2cnd 12371 . . . 4 (𝐴 ∈ ℝ → 2 ∈ ℂ)
3120, 6eqnetrrd 3015 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0)
32 2ne0 12397 . . . . . . 7 2 ≠ 0
3332a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 2 ≠ 0)
3429, 30, 33divne0bd 12082 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) ≠ 0 ↔ (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0))
3531, 34mpbird 257 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ≠ 0)
3627, 29, 30, 35, 33divcan7d 12098 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3722, 36eqtrd 2780 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3824rpefcld 16153 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ+)
3923, 38ltsubrpd 13131 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (exp‘𝐴))
4023, 38ltaddrpd 13132 . . . . 5 (𝐴 ∈ ℝ → (exp‘𝐴) < ((exp‘𝐴) + (exp‘-𝐴)))
4126, 23, 28, 39, 40lttrd 11451 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < ((exp‘𝐴) + (exp‘-𝐴)))
4229mulridd 11307 . . . 4 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) · 1) = ((exp‘𝐴) + (exp‘-𝐴)))
4341, 42breqtrrd 5194 . . 3 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1))
44 1red 11291 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
45 efgt0 16151 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘𝐴))
46 efgt0 16151 . . . . . 6 (-𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4724, 46syl 17 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4823, 25, 45, 47addgt0d 11865 . . . 4 (𝐴 ∈ ℝ → 0 < ((exp‘𝐴) + (exp‘-𝐴)))
49 ltdivmul 12170 . . . 4 ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ ∧ 0 < ((exp‘𝐴) + (exp‘-𝐴)))) → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5026, 44, 28, 48, 49syl112anc 1374 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5143, 50mpbird 257 . 2 (𝐴 ∈ ℝ → (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1)
5237, 51eqbrtrd 5188 1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  expce 16109  sincsin 16111  cosccos 16112  tanctan 16113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119
This theorem is referenced by:  tanhbnd  16209
  Copyright terms: Public domain W3C validator