MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanhlt1 Structured version   Visualization version   GIF version

Theorem tanhlt1 16104
Description: The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanhlt1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)

Proof of Theorem tanhlt1
StepHypRef Expression
1 ax-icn 11103 . . . . . . 7 i ∈ ℂ
2 recn 11134 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 11128 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 587 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpcoshcl 16101 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+)
65rpne0d 12976 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0)
7 tanval 16072 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
84, 6, 7syl2anc 584 . . . . 5 (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
98oveq1d 7384 . . . 4 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i))
104sincld 16074 . . . . 5 (𝐴 ∈ ℝ → (sin‘(i · 𝐴)) ∈ ℂ)
11 recoshcl 16102 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ)
1211recnd 11178 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℂ)
131a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ∈ ℂ)
14 ine0 11589 . . . . . 6 i ≠ 0
1514a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ≠ 0)
1610, 12, 13, 6, 15divdiv32d 11959 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i) = (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))))
17 sinhval 16098 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
182, 17syl 17 . . . . 5 (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
19 coshval 16099 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
202, 19syl 17 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
2118, 20oveq12d 7387 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
229, 16, 213eqtrd 2768 . . 3 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
23 reefcl 16029 . . . . . 6 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
24 renegcl 11461 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2524reefcld 16030 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ)
2623, 25resubcld 11582 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ)
2726recnd 11178 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
2823, 25readdcld 11179 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ)
2928recnd 11178 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ)
30 2cnd 12240 . . . 4 (𝐴 ∈ ℝ → 2 ∈ ℂ)
3120, 6eqnetrrd 2993 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0)
32 2ne0 12266 . . . . . . 7 2 ≠ 0
3332a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 2 ≠ 0)
3429, 30, 33divne0bd 11946 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) ≠ 0 ↔ (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0))
3531, 34mpbird 257 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ≠ 0)
3627, 29, 30, 35, 33divcan7d 11962 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3722, 36eqtrd 2764 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3824rpefcld 16049 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ+)
3923, 38ltsubrpd 13003 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (exp‘𝐴))
4023, 38ltaddrpd 13004 . . . . 5 (𝐴 ∈ ℝ → (exp‘𝐴) < ((exp‘𝐴) + (exp‘-𝐴)))
4126, 23, 28, 39, 40lttrd 11311 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < ((exp‘𝐴) + (exp‘-𝐴)))
4229mulridd 11167 . . . 4 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) · 1) = ((exp‘𝐴) + (exp‘-𝐴)))
4341, 42breqtrrd 5130 . . 3 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1))
44 1red 11151 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
45 efgt0 16047 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘𝐴))
46 efgt0 16047 . . . . . 6 (-𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4724, 46syl 17 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4823, 25, 45, 47addgt0d 11729 . . . 4 (𝐴 ∈ ℝ → 0 < ((exp‘𝐴) + (exp‘-𝐴)))
49 ltdivmul 12034 . . . 4 ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ ∧ 0 < ((exp‘𝐴) + (exp‘-𝐴)))) → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5026, 44, 28, 48, 49syl112anc 1376 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5143, 50mpbird 257 . 2 (𝐴 ∈ ℝ → (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1)
5237, 51eqbrtrd 5124 1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  expce 16003  sincsin 16005  cosccos 16006  tanctan 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-tan 16013
This theorem is referenced by:  tanhbnd  16105
  Copyright terms: Public domain W3C validator