MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanhlt1 Structured version   Visualization version   GIF version

Theorem tanhlt1 16069
Description: The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanhlt1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)

Proof of Theorem tanhlt1
StepHypRef Expression
1 ax-icn 11065 . . . . . . 7 i ∈ ℂ
2 recn 11096 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 11090 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 587 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpcoshcl 16066 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+)
65rpne0d 12939 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0)
7 tanval 16037 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
84, 6, 7syl2anc 584 . . . . 5 (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
98oveq1d 7361 . . . 4 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i))
104sincld 16039 . . . . 5 (𝐴 ∈ ℝ → (sin‘(i · 𝐴)) ∈ ℂ)
11 recoshcl 16067 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ)
1211recnd 11140 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℂ)
131a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ∈ ℂ)
14 ine0 11552 . . . . . 6 i ≠ 0
1514a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ≠ 0)
1610, 12, 13, 6, 15divdiv32d 11922 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i) = (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))))
17 sinhval 16063 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
182, 17syl 17 . . . . 5 (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
19 coshval 16064 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
202, 19syl 17 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
2118, 20oveq12d 7364 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
229, 16, 213eqtrd 2770 . . 3 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
23 reefcl 15994 . . . . . 6 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
24 renegcl 11424 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2524reefcld 15995 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ)
2623, 25resubcld 11545 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ)
2726recnd 11140 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
2823, 25readdcld 11141 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ)
2928recnd 11140 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ)
30 2cnd 12203 . . . 4 (𝐴 ∈ ℝ → 2 ∈ ℂ)
3120, 6eqnetrrd 2996 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0)
32 2ne0 12229 . . . . . . 7 2 ≠ 0
3332a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 2 ≠ 0)
3429, 30, 33divne0bd 11909 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) ≠ 0 ↔ (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0))
3531, 34mpbird 257 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ≠ 0)
3627, 29, 30, 35, 33divcan7d 11925 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3722, 36eqtrd 2766 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3824rpefcld 16014 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ+)
3923, 38ltsubrpd 12966 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (exp‘𝐴))
4023, 38ltaddrpd 12967 . . . . 5 (𝐴 ∈ ℝ → (exp‘𝐴) < ((exp‘𝐴) + (exp‘-𝐴)))
4126, 23, 28, 39, 40lttrd 11274 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < ((exp‘𝐴) + (exp‘-𝐴)))
4229mulridd 11129 . . . 4 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) · 1) = ((exp‘𝐴) + (exp‘-𝐴)))
4341, 42breqtrrd 5117 . . 3 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1))
44 1red 11113 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
45 efgt0 16012 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘𝐴))
46 efgt0 16012 . . . . . 6 (-𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4724, 46syl 17 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4823, 25, 45, 47addgt0d 11692 . . . 4 (𝐴 ∈ ℝ → 0 < ((exp‘𝐴) + (exp‘-𝐴)))
49 ltdivmul 11997 . . . 4 ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ ∧ 0 < ((exp‘𝐴) + (exp‘-𝐴)))) → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5026, 44, 28, 48, 49syl112anc 1376 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5143, 50mpbird 257 . 2 (𝐴 ∈ ℝ → (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1)
5237, 51eqbrtrd 5111 1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011   < clt 11146  cmin 11344  -cneg 11345   / cdiv 11774  2c2 12180  expce 15968  sincsin 15970  cosccos 15971  tanctan 15972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978
This theorem is referenced by:  tanhbnd  16070
  Copyright terms: Public domain W3C validator