MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanhlt1 Structured version   Visualization version   GIF version

Theorem tanhlt1 15509
Description: The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanhlt1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)

Proof of Theorem tanhlt1
StepHypRef Expression
1 ax-icn 10593 . . . . . . 7 i ∈ ℂ
2 recn 10624 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 10618 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 589 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpcoshcl 15506 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+)
65rpne0d 12434 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0)
7 tanval 15477 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
84, 6, 7syl2anc 586 . . . . 5 (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))))
98oveq1d 7168 . . . 4 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i))
104sincld 15479 . . . . 5 (𝐴 ∈ ℝ → (sin‘(i · 𝐴)) ∈ ℂ)
11 recoshcl 15507 . . . . . 6 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ)
1211recnd 10666 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℂ)
131a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ∈ ℂ)
14 ine0 11072 . . . . . 6 i ≠ 0
1514a1i 11 . . . . 5 (𝐴 ∈ ℝ → i ≠ 0)
1610, 12, 13, 6, 15divdiv32d 11438 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i) = (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))))
17 sinhval 15503 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
182, 17syl 17 . . . . 5 (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
19 coshval 15504 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
202, 19syl 17 . . . . 5 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
2118, 20oveq12d 7171 . . . 4 (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
229, 16, 213eqtrd 2859 . . 3 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
23 reefcl 15436 . . . . . 6 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
24 renegcl 10946 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2524reefcld 15437 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ)
2623, 25resubcld 11065 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ)
2726recnd 10666 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
2823, 25readdcld 10667 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ)
2928recnd 10666 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ)
30 2cnd 11713 . . . 4 (𝐴 ∈ ℝ → 2 ∈ ℂ)
3120, 6eqnetrrd 3083 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0)
32 2ne0 11739 . . . . . . 7 2 ≠ 0
3332a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 2 ≠ 0)
3429, 30, 33divne0bd 11425 . . . . 5 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) ≠ 0 ↔ (((exp‘𝐴) + (exp‘-𝐴)) / 2) ≠ 0))
3531, 34mpbird 259 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) + (exp‘-𝐴)) ≠ 0)
3627, 29, 30, 35, 33divcan7d 11441 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / 2) / (((exp‘𝐴) + (exp‘-𝐴)) / 2)) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3722, 36eqtrd 2855 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))))
3824rpefcld 15454 . . . . . 6 (𝐴 ∈ ℝ → (exp‘-𝐴) ∈ ℝ+)
3923, 38ltsubrpd 12461 . . . . 5 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (exp‘𝐴))
4023, 38ltaddrpd 12462 . . . . 5 (𝐴 ∈ ℝ → (exp‘𝐴) < ((exp‘𝐴) + (exp‘-𝐴)))
4126, 23, 28, 39, 40lttrd 10798 . . . 4 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < ((exp‘𝐴) + (exp‘-𝐴)))
4229mulid1d 10655 . . . 4 (𝐴 ∈ ℝ → (((exp‘𝐴) + (exp‘-𝐴)) · 1) = ((exp‘𝐴) + (exp‘-𝐴)))
4341, 42breqtrrd 5091 . . 3 (𝐴 ∈ ℝ → ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1))
44 1red 10639 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
45 efgt0 15452 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘𝐴))
46 efgt0 15452 . . . . . 6 (-𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4724, 46syl 17 . . . . 5 (𝐴 ∈ ℝ → 0 < (exp‘-𝐴))
4823, 25, 45, 47addgt0d 11212 . . . 4 (𝐴 ∈ ℝ → 0 < ((exp‘𝐴) + (exp‘-𝐴)))
49 ltdivmul 11512 . . . 4 ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((exp‘𝐴) + (exp‘-𝐴)) ∈ ℝ ∧ 0 < ((exp‘𝐴) + (exp‘-𝐴)))) → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5026, 44, 28, 48, 49syl112anc 1369 . . 3 (𝐴 ∈ ℝ → ((((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1 ↔ ((exp‘𝐴) − (exp‘-𝐴)) < (((exp‘𝐴) + (exp‘-𝐴)) · 1)))
5143, 50mpbird 259 . 2 (𝐴 ∈ ℝ → (((exp‘𝐴) − (exp‘-𝐴)) / ((exp‘𝐴) + (exp‘-𝐴))) < 1)
5237, 51eqbrtrd 5085 1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1536  wcel 2113  wne 3015   class class class wbr 5063  cfv 6352  (class class class)co 7153  cc 10532  cr 10533  0cc0 10534  1c1 10535  ici 10536   + caddc 10537   · cmul 10539   < clt 10672  cmin 10867  -cneg 10868   / cdiv 11294  2c2 11690  expce 15411  sincsin 15413  cosccos 15414  tanctan 15415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-inf2 9101  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611  ax-pre-sup 10612  ax-addf 10613  ax-mulf 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-se 5512  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-pm 8406  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-div 11295  df-nn 11636  df-2 11698  df-3 11699  df-n0 11896  df-z 11980  df-uz 12242  df-rp 12388  df-ico 12742  df-fz 12891  df-fzo 13032  df-fl 13160  df-seq 13368  df-exp 13428  df-fac 13632  df-bc 13661  df-hash 13689  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-tan 15421
This theorem is referenced by:  tanhbnd  15510
  Copyright terms: Public domain W3C validator